cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A034168 Disjoint discriminants (one form per genus) of type 2 (doubled).

Original entry on oeis.org

2, 6, 10, 22, 30, 42, 58, 70, 78, 102, 130, 190, 210, 330, 462
Offset: 1

Views

Author

Jonathan Borwein (jborwein(AT)cecm.sfu.ca), choi(AT)cecm.sfu.ca (Stephen Choi)

Keywords

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, page 293.
  • L. E. Dickson, Introduction to the theory of numbers, Dover, NY, 1929.

Crossrefs

Cf. A000926, A005843, A034169, A055745, A139826. Subsequence of A025052.

Programs

  • Mathematica
    noSol = {};
    Do[lim = Ceiling[(n-2)/3]; found = False; Do[If[n > a*b && Mod[n - a*b, a+b] == 0 && Quotient[n - a*b, a+b] > b, found = True; Break[]], {a, 1, lim-1}, {b, a+1, lim}]; If[!found, AppendTo[noSol, n]], {n, 1000}];
    Select[noSol, EvenQ[#] && SquareFreeQ[#]&] (* Jean-François Alcover, Jul 21 2022, after T. D. Noe in A000926 *)
  • PARI
    ok(n)={n%4==2 && issquarefree(n) && !select(t->t<>2, quadclassunit(-4*n).cyc)} \\ Andrew Howroyd, Jun 09 2018

Formula

Intersection of A005843 and A139826. - Andrew Howroyd, Jun 09 2018

A034170 Disjoint discriminants (one form per genus) of type 1.

Original entry on oeis.org

5, 13, 21, 33, 37, 57, 85, 93, 105, 133, 165, 177, 253, 273, 345, 357, 385, 1365
Offset: 1

Views

Author

Jonathan Borwein (jborwein(AT)cecm.sfu.ca), Stephen Choi (choi(AT)cecm.sfu.ca)

Keywords

Comments

A subsequence of A000926, A139826, and A232528. - Andrew Howroyd, Jun 09 2018

References

  • L. E. Dickson, Introduction to the theory of numbers, Dover, NY, 1929.
  • J. M. Borwein and P. B. Borwein, Pi and the AGM, page 293.

Crossrefs

Programs

  • PARI
    ok(n)={n<>1 && n%4==1 && issquarefree(n) && !select(t->t<>2, quadclassunit(-4*n).cyc)} \\ Andrew Howroyd, Jun 09 2018

Formula

Intersection of A004766 and A139826. - Andrew Howroyd, Jun 09 2018
Showing 1-2 of 2 results.