A025052 Numbers not of form ab + bc + ca for 1<=a<=b<=c (probably the list is complete).
1, 2, 4, 6, 10, 18, 22, 30, 42, 58, 70, 78, 102, 130, 190, 210, 330, 462
Offset: 1
A034169 Disjoint discriminants (one form per genus) of type 2.
1, 3, 5, 11, 15, 21, 29, 35, 39, 51, 65, 95, 105, 165, 231
Offset: 1
References
- J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 198.
- J. M. Borwein and P. B. Borwein, Pi and the AGM, page 293.
- L. E. Dickson, Introduction to the theory of numbers, Dover, NY, 1929.
Links
- J. Borwein and K.-K. S. Choi, On the representations of xy+yz+zx, Experimental Mathematics, 9 (2000), 153-158.
- Experimental Mathematics, Home Page
Formula
a(n) = A034168(n) / 2. - Sean A. Irvine, Aug 03 2020
A055745 Squarefree numbers not of form ab + bc + ca for 1 <= a <= b <= c (probably the list is complete).
1, 2, 6, 10, 22, 30, 42, 58, 70, 78, 102, 130, 190, 210, 330, 462
Offset: 1
References
- Maohua Le, A note on positive integer solutions of the equation xy+yz+zx=n, Publ. Math. Debrecen 52 (1998) 159-165; Math. Rev. 98j:11016.
Links
- J. M. Borwein, Adventures with the OEIS: Five sequences Tony may like, Guttmann 70th [Birthday] Meeting, 2015, revised May 2016.
- J. M. Borwein, Adventures with the OEIS: Five sequences Tony may like, Guttmann 70th [Birthday] Meeting, 2015, revised May 2016. [Cached copy, with permission]
- J. Borwein and K.-K. S. Choi, On the representations of xy+yz+zx, Experimental Mathematics, 9 (2000), 153-158.
Programs
-
Mathematica
solQ[n_, x_] := Reduce[1 <= y <= z && n == x*y + y*z + z*x, {y, z}, Integers] =!= False; solQ[n_] := Catch[xm = Ceiling[(n-1)/2]; For[x = 1, x <= xm, x++, Which[ solQ[n, x] === True, Throw[True], x == xm, Throw[False]]]] ; solQ[1] = False; Reap[ Do[ If[ SquareFreeQ[n], If[! solQ[n] , Print[n]; Sow[n]]], {n, 1, 500}]][[2, 1]] (* Jean-François Alcover, Jun 15 2012 *)
Comments
Links
Crossrefs
Programs
Mathematica
Extensions