cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A000926 Euler's "numerus idoneus" (or "numeri idonei", or idoneal, or suitable, or convenient numbers).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 21, 22, 24, 25, 28, 30, 33, 37, 40, 42, 45, 48, 57, 58, 60, 70, 72, 78, 85, 88, 93, 102, 105, 112, 120, 130, 133, 165, 168, 177, 190, 210, 232, 240, 253, 273, 280, 312, 330, 345, 357, 385, 408, 462, 520, 760, 840, 1320, 1365, 1848
Offset: 1

Views

Author

Keywords

Comments

There are many equivalent definitions of these numbers. Based on Cox, Theorem 3.22 and Proposition 3.24 and a comment by Eric Rains (rains(AT)caltech.edu), we can say that a positive number n belongs to this sequence if and only if any of the following equivalent statements is true:
(1) Let m > 1 be an odd number relatively prime to n which can be written in the form x^2 + n*y^2 with x, y relatively prime. If the equation m = x^2 + n*y^2 has only one solution with x, y >= 0, then m is a prime number. [Euler]
(2) Every genus of quadratic forms of discriminant -4n consists of a single class. [Gauss]
(3) If a*x^2 + b*x*y + c*y^2 is a reduced quadratic form of discriminant -4n, then either b=0, a=b or a = c. [Cox]
(4) Two quadratic forms of discriminant -4n are equivalent if and only if they are properly equivalent. [Cox]
(5) The class group C(-4n) is isomorphic to (Z/2Z)^m for some integer m. [Cox]
(6) n is not of the form ab+ac+bc with 0 < a < b < c. (See proof in link below.) [Rains]
It is conjectured that the list given here is complete. Chowla showed that the list is finite and Weinberger showed that there is at most one further term.
If an additional term exists it is > 100000000. - Jud McCranie, Jun 27 2005
The terms shown are the union of {1,2,3,4,7}, A033266, A033267, A033268 and A033269 (corresponding to class numbers 1, 2, 4, 8 and 16 respectively).
Note that for n in this sequence, n+1 is either a prime, twice a prime, the square of a prime, 8 or 16. - T. D. Noe, Apr 08 2004. [This is a general theorem that is not hard to prove using genus theory. The "32" in the original comment was an error. - Tom Hagedorn (hagedorn(AT)tcnj.edu), Dec 29 2008]
Also numbers n such that for all primes p such that p is a quadratic residue (mod 4*n) and p-n is a quadratic residue (mod 4*n), p can be uniquely written into the form as x^2+n*y^2. - V. Raman, Nov 25 2013

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 97 at p. 272.
  • Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966, pp. 425-430.
  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989, Section 3.
  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 1848, p. 146, Ellipses, Paris 2008.
  • C. F. Gauss, Disquisitiones Arithmeticae, 1801. English translation: Yale University Press, New Haven, CT, 1966, Sections 329-334.
  • G. B. Mathews, Theory of Numbers, Chelsea, no date, p. 263.
  • Paulo Ribenboim, My Numbers, My Friends, Chapter 11, Springer-Verlag, NY, 2000.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 142-143.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 103.
  • A. Weil, Number theory: an approach through history; from Hammurapi to Legendre, Birkhäuser, Boston, 1984; see pp. 188, 219-226.

Crossrefs

Sequence A025052 is a subsequence.
Cf. A139642 (congruences for idoneal quadratic forms).

Programs

  • Mathematica
    noSol={}; Do[lim=Ceiling[(n-2)/3]; found=False; Do[If[n>a*b && Mod[n-a*b, a+b]==0 && Quotient[n-a*b, a+b]>b, found=True; Break[]], {a, 1, lim-1}, {b, a+1, lim}]; If[ !found, AppendTo[noSol, n]], {n, 10000}]; noSol (* T. D. Noe, Apr 08 2004 *)
  • PARI
    A000926(Nmax=1e9)={for(n=1,Nmax,for(a=1,sqrtint(n\3),for(b=a+1,(n-a)\(3*a+2),n-a<(2*a+1+b)*b & break;(n-a*b)%(a+b)==0 & next(3)));print1(n", "))} \\ M. F. Hasler, Dec 04 2007
    
  • PARI
    ok(n)=!#select(k->k<>2, quadclassunit(-4*n).cyc) \\ Andrew Howroyd, Jun 08 2018

Extensions

Edited by N. J. A. Sloane, Dec 07 2007

A093669 Numbers having a unique representation as ab+ac+bc, with 0 < a < b < c.

Original entry on oeis.org

11, 14, 17, 19, 20, 27, 32, 34, 36, 43, 46, 49, 52, 64, 67, 73, 82, 97, 100, 142, 148, 163, 193
Offset: 1

Views

Author

T. D. Noe, Apr 08 2004

Keywords

Comments

Are there more terms?
No more terms < 10^6. - Joerg Arndt, Oct 01 2017

Examples

			11 is on the list because 11 = 1*2+1*3+2*3.
		

References

Crossrefs

Cf. A000926 (numbers not of the form ab+ac+bc, 0

Programs

  • Mathematica
    oneSol={}; Do[lim=Ceiling[(n-2)/3]; cnt=0; Do[If[n>a*b && Mod[n-a*b, a+b]==0 && Quotient[n-a*b, a+b]>b, cnt++; If[cnt>1, Break[]]], {a, 1, lim-1}, {b, a+1, lim}]; If[cnt==1, AppendTo[oneSol, n]], {n, 10000}]; oneSol
  • Python
    from collections import Counter
    def aupto(N):
        acount = Counter()
        for i in range(1, N-1):
            for j in range(i+1, N//i + 1):
                p, s = i*j, i+j
                for k in range(j+1, (N-p)//s + 1):
                    acount.update([p + s*k])
        return sorted([k for k in acount if acount[k] == 1])
    print(aupto(10**5)) # Michael S. Branicky, Nov 14 2021

A025051 Numbers of the form j*k + k*i + i*j, where i,j,k >= 1.

Original entry on oeis.org

3, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88
Offset: 1

Keywords

Crossrefs

Uniquification of sequence A025050.
Cf. A025052 (complement), A066955.

Programs

  • Mathematica
    Take[Union[Total[Times@@@Subsets[#,{2}]]&/@Tuples[Range[25],{3}]], 80] (* Harvey P. Dale, Aug 11 2011 *)

Formula

On the GRH, a(n) = n + 18 for n > 444. If there is some N > 444 with a(N) not equal to n + 19, then for n >= N, a(n) = n + 19 (and GRH is false). See Borwein & Choi. - Charles R Greathouse IV, Dec 19 2022
n is in the sequence if and only if A066955(n) > 0. - Charles R Greathouse IV, Jun 25 2024

A027563 Numbers not of form abc + abd + acd + bcd for 1<=a<=b<=c<=d.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 9, 11, 14, 15, 18, 21, 23, 26, 29, 30, 33, 35, 41, 48, 51, 53, 63, 65, 74, 75, 86, 89, 90, 98, 111, 113, 119, 125, 131, 141, 155, 158, 173, 179, 191, 209, 210, 233, 239, 251, 254, 273, 285, 293, 321, 323, 326, 338, 341, 345, 363, 419
Offset: 1

Author

Keywords

Comments

This list is conjecturally complete, but this has not been proved. It may be complete as a consequence of the Generalized Riemann Hypothesis; see comments for A025052. - Harry Richman, Jan 09 2025

Crossrefs

Cf. A025052 (3 variables), A027564 (5 variables), A027565, A027566.

A094376 Least number having exactly n representations as ab+ac+bc with 0 < a < b < c.

Original entry on oeis.org

1, 11, 23, 41, 47, 59, 71, 116, 119, 131, 164, 425, 191, 236, 239, 446, 335, 419, 311, 404, 431, 584, 647, 524, 479, 1019, 831, 776, 671, 944, 719, 1076, 839, 1004, 959, 1889, 1196, 2099, 1271, 1856, 1151, 1931, 1391, 1676, 1319, 1616, 1751, 3275, 1511
Offset: 0

Author

T. D. Noe and Robert G. Wilson v, Apr 28 2004

Keywords

Comments

Note that the Mathematica program computes A094376, A094377 and A094378, but outputs only this sequence.

Examples

			a(2) = 23 because 23 is the least number with 2 representations: (a,b,c) = (1,2,7) and (1,3,5).
		

References

Crossrefs

Cf. A000926 (n having no representations), A093669 (n having one representation), A025052, A094377, A094378.

Programs

  • Maple
    f:= proc(n) local a, t, s;
      t:= 0;
      for a from 1 to floor(sqrt(n/3)) do
        t:= t + nops(select(s -> s > 2*a and n+a^2 > s^2, numtheory:-divisors(n+a^2)))
      od;
      t
    end proc:
    N:= 200: # for a(0)..a(N)
    V:= Array(0..N): count:= 0:
    for n from 1 while count < N+1 do
       v:= f(n); if v <= N and V[v] = 0 then
          count:= count+1; V[v]:= n; fi
    od:
    seq(V[i],i=0..N); # Robert Israel, May 05 2021
  • Mathematica
    cntMax=10; nSol=Table[{0, 0, 0}, {cntMax+1}]; Do[lim=Ceiling[(n-2)/3]; cnt=0; Do[If[n>a*b && Mod[n-a*b, a+b]==0 && Quotient[n-a*b, a+b]>b, cnt++; If[cnt>cntMax, Break[]]], {a, 1, lim-1}, {b, a+1, lim}]; If[cnt<=cntMax, If[nSol[[cnt+1, 1]]==0, nSol[[cnt+1, 1]]=n]; nSol[[cnt+1, 2]]=n; nSol[[cnt+1, 3]]++;], {n, 10000}]; Table[nSol[[i, 1]], {i, cntMax+1}]

A094377 Greatest number having exactly n representations as ab+ac+bc with 0 < a < b < c.

Original entry on oeis.org

1848, 193, 1012, 862, 3040, 2062, 4048, 3217, 7392, 4162, 7837, 8002, 12397, 13297, 14722, 16417, 21253, 21058, 30493, 27358, 34357, 34318, 47338, 40177, 50317, 39502, 61462, 62302, 73117, 83218, 106177, 67138, 92698, 102958, 134773, 111577, 112942, 121522, 104938, 96958, 151237, 166798, 150382, 139393, 190513, 129838
Offset: 0

Author

T. D. Noe, Apr 28 2004

Keywords

Comments

Numbers up to 250,000 were checked. Note that the Mathematica program computes A094376, A094377 and A094378, but outputs only this sequence.

Examples

			a(1) = 193 because 193 is the largest number with a unique representation: (a,b,c) = (4,7,15).
		

References

Crossrefs

Cf. A000926 (n having no representations), A093669 (n having one representation), A094376, A094378.

Programs

  • Mathematica
    cntMax=10; nSol=Table[{0, 0, 0}, {cntMax+1}]; Do[lim=Ceiling[(n-2)/3]; cnt=0; Do[If[n>a*b && Mod[n-a*b, a+b]==0 && Quotient[n-a*b, a+b]>b, cnt++; If[cnt>cntMax, Break[]]], {a, 1, lim-1}, {b, a+1, lim}]; If[cnt<=cntMax, If[nSol[[cnt+1, 1]]==0, nSol[[cnt+1, 1]]=n]; nSol[[cnt+1, 2]]=n; nSol[[cnt+1, 3]]++;], {n, 10000}]; Table[nSol[[i, 2]], {i, cntMax+1}]

Extensions

More terms (using limit 10^6) from Joerg Arndt, Oct 01 2017

A094379 Least number having exactly n representations as ab+ac+bc with 1 <= a <= b <= c.

Original entry on oeis.org

1, 3, 11, 23, 35, 47, 59, 71, 95, 188, 119, 164, 231, 191, 215, 239, 299, 356, 335, 311, 404, 431, 591, 584, 524, 479, 551, 656, 831, 776, 671, 719, 791, 839, 1004, 1031, 959, 1244, 1196, 1439, 1271, 1151, 1931, 1847, 1391, 1319, 1811, 1784, 1616, 1511, 1799
Offset: 0

Author

T. D. Noe, Apr 28 2004

Keywords

Comments

Note that the Mathematica program computes A094379, A094380 and A094381, but outputs only this sequence.
A066955(a(n)) = n and A066955(m) = n for m < a(n). [Reinhard Zumkeller, Mar 23 2012]

Examples

			a(3) = 23 because 23 is the least number with 3 representations: (a,b,c) = (1,1,11), (1,2,7) and (1,3,5).
		

References

Crossrefs

Cf. A025052 (n having no representations), A093670 (n having one representation), A094380, A094381.

Programs

  • Haskell
    import Data.List (elemIndex)
    import Data.Maybe (fromJust)
    a094379 = (+ 1) . fromJust . (`elemIndex` a066955_list)
    -- Reinhard Zumkeller, Mar 23 2012
  • Mathematica
    cntMax=10; nSol=Table[{0, 0, 0}, {cntMax+1}]; Do[lim=Ceiling[(n-1)/2]; cnt=0; Do[If[n>a*b && Mod[n-a*b, a+b]==0 && Quotient[n-a*b, a+b]>=b, cnt++; If[cnt>cntMax, Break[]]], {a, 1, lim}, {b, a, lim}]; If[cnt<=cntMax, If[nSol[[cnt+1, 1]]==0, nSol[[cnt+1, 1]]=n]; nSol[[cnt+1, 2]]=n; nSol[[cnt+1, 3]]++;], {n, 10000}]; Table[nSol[[i, 1]], {i, cntMax+1}]

A027564 Numbers not of form abcd + abce + abde + acde + bcde for 1 <= a <= b <= c <= d <= e.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 14, 15, 18, 19, 20, 22, 24, 26, 27, 31, 32, 34, 35, 36, 38, 39, 42, 46, 47, 50, 54, 55, 59, 60, 62, 66, 67, 70, 71, 75, 78, 84, 87, 90, 92, 94, 98, 99, 102, 104, 106, 110, 111, 115, 116, 119, 122, 126, 127, 130, 131, 132, 138
Offset: 1

Author

Keywords

Crossrefs

Cf. A025052 (3 variables), A027563 (4 variables), A027565, A027566.

Programs

  • Maple
    N := 1000: # for all terms <= N
    V:= Vector(N):
    for a from 1 to floor((N/5)^(1/4)) do
      for b from a while 4*a*b^3+b^4<= N do
        for c from b while 3*a*b*c^2 + (a+b)*c^3 <= N do
          for d from c while 2*a*b*c*d + (b*c+a*c+a*b)*d^2 <= N do
            for e from d do
              r:= a*b*c*d+a*b*c*e+a*b*d*e+a*c*d*e+b*c*d*e;
              if r > N then break fi;
              V[r]:= 1;
    od od od od od:
    select(t -> V[t]=0, [$1..N]); # Robert Israel, Nov 04 2018

A027565 Largest number not of form k_1 k_2 .. k_n (1/k_1 + .. + 1/k_n), k_i integers >= 1.

Original entry on oeis.org

1, 462, 52061, 33952307
Offset: 2

Author

Keywords

Examples

			For n=2, the largest number not of the form k_1+k_2 with k_1>=1, k_2>=1 is 1! So a(2) = 1. For n=3 the largest number not of the form ab+bc+ca (a,b,c >= 1) is believed to be 462 (see A025052).
		

Crossrefs

See A025052 for numbers of form ab+bc+ca (which is the case n=3), A027563 for n=4, A027564 for n=5. See also A027566.

A027566 Number of numbers not of form k_1 k_2 .. k_n (1/k_1 + .. + 1/k_n), k_i >= 1.

Original entry on oeis.org

1, 18, 126, 1652
Offset: 2

Author

Keywords

Crossrefs

Showing 1-10 of 22 results. Next