A025052 Numbers not of form ab + bc + ca for 1<=a<=b<=c (probably the list is complete).
1, 2, 4, 6, 10, 18, 22, 30, 42, 58, 70, 78, 102, 130, 190, 210, 330, 462
Offset: 1
A066955 Number of unordered solutions of x*y + y*z + z*x = n, x,y,z > 0.
0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 2, 1, 2, 0, 2, 2, 2, 0, 3, 2, 1, 2, 3, 1, 3, 0, 3, 3, 2, 1, 4, 2, 1, 2, 4, 2, 4, 0, 2, 4, 3, 1, 5, 3, 2, 2, 4, 2, 3, 2, 4, 5, 2, 0, 6, 2, 3, 3, 5, 3, 4, 2, 2, 5, 4, 0, 7, 3, 2, 4, 5, 4, 4, 0, 5, 6, 4, 1, 6, 4, 2, 4, 6, 2, 6, 2, 4, 5, 2, 3, 8, 6, 2, 3, 6, 2, 7, 0, 5, 8, 4
Offset: 1
Comments
a(n) is the number of distinct rectangular cuboids each one having integer surface area 2*n and integer edge lengths x, y and z. - Felix Huber, Aug 08 2023
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
a066955 n = length [(x,y,z) | x <- [1 .. a000196 (div n 3)], y <- [x .. div n x], z <- [y .. div (n - x*y) (x + y)], x * y + (x + y) * z == n] -- Reinhard Zumkeller, Mar 23 2012
-
PARI
a(n)=sum(i=1,n,sum(j=1,i,sum(k=1,j,if(i*j+j*k+k*i-n,0,1))))
Formula
Extensions
More terms from Benoit Cloitre, Feb 02 2003
A094380 Greatest number having exactly n representations as ab+ac+bc with 1 <= a <= b <= c.
462, 142, 742, 862, 2170, 2062, 3502, 2962, 5278, 5413, 7282, 8002, 11302, 11278, 14722, 13918, 18778, 21058, 30178, 30493, 30622, 34318, 47338, 31102, 44902, 43717
Offset: 0
Keywords
Comments
Examples
a(1) = 142 because 142 is the largest number with a unique representation: (a,b,c) = (1,10,12).
References
- See A025052
Crossrefs
Programs
-
Mathematica
cntMax=10; nSol=Table[{0, 0, 0}, {cntMax+1}]; Do[lim=Ceiling[(n-1)/2]; cnt=0; Do[If[n>a*b && Mod[n-a*b, a+b]==0 && Quotient[n-a*b, a+b]>=b, cnt++; If[cnt>cntMax, Break[]]], {a, 1, lim}, {b, a, lim}]; If[cnt<=cntMax, If[nSol[[cnt+1, 1]]==0, nSol[[cnt+1, 1]]=n]; nSol[[cnt+1, 2]]=n; nSol[[cnt+1, 3]]++;], {n, 10000}]; Table[nSol[[i, 2]], {i, cntMax+1}]
A094381 Number of numbers having exactly n representations as ab+ac+bc with 1 <= a <= b <= c.
18, 16, 61, 30, 133, 51, 119, 48, 275, 59, 217, 72, 386, 65, 292, 83, 545, 101, 332, 89, 673, 120, 453, 106, 865, 104
Offset: 0
Keywords
Comments
Examples
a(1) = 16 because there are 16 numbers (A093670) with unique representations.
References
- See A025052
Crossrefs
Programs
-
Mathematica
cntMax=10; nSol=Table[{0, 0, 0}, {cntMax+1}]; Do[lim=Ceiling[(n-1)/2]; cnt=0; Do[If[n>a*b && Mod[n-a*b, a+b]==0 && Quotient[n-a*b, a+b]>=b, cnt++; If[cnt>cntMax, Break[]]], {a, 1, lim}, {b, a, lim}]; If[cnt<=cntMax, If[nSol[[cnt+1, 1]]==0, nSol[[cnt+1, 1]]=n]; nSol[[cnt+1, 2]]=n; nSol[[cnt+1, 3]]++;], {n, 10000}]; Table[nSol[[i, 3]], {i, cntMax+1}]
Comments
Links
Crossrefs
Programs
Mathematica
Extensions