cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A025051 Numbers of the form j*k + k*i + i*j, where i,j,k >= 1.

Original entry on oeis.org

3, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88
Offset: 1

Views

Author

Keywords

Crossrefs

Uniquification of sequence A025050.
Cf. A025052 (complement), A066955.

Programs

  • Mathematica
    Take[Union[Total[Times@@@Subsets[#,{2}]]&/@Tuples[Range[25],{3}]], 80] (* Harvey P. Dale, Aug 11 2011 *)

Formula

On the GRH, a(n) = n + 18 for n > 444. If there is some N > 444 with a(N) not equal to n + 19, then for n >= N, a(n) = n + 19 (and GRH is false). See Borwein & Choi. - Charles R Greathouse IV, Dec 19 2022
n is in the sequence if and only if A066955(n) > 0. - Charles R Greathouse IV, Jun 25 2024

A094379 Least number having exactly n representations as ab+ac+bc with 1 <= a <= b <= c.

Original entry on oeis.org

1, 3, 11, 23, 35, 47, 59, 71, 95, 188, 119, 164, 231, 191, 215, 239, 299, 356, 335, 311, 404, 431, 591, 584, 524, 479, 551, 656, 831, 776, 671, 719, 791, 839, 1004, 1031, 959, 1244, 1196, 1439, 1271, 1151, 1931, 1847, 1391, 1319, 1811, 1784, 1616, 1511, 1799
Offset: 0

Views

Author

T. D. Noe, Apr 28 2004

Keywords

Comments

Note that the Mathematica program computes A094379, A094380 and A094381, but outputs only this sequence.
A066955(a(n)) = n and A066955(m) = n for m < a(n). [Reinhard Zumkeller, Mar 23 2012]

Examples

			a(3) = 23 because 23 is the least number with 3 representations: (a,b,c) = (1,1,11), (1,2,7) and (1,3,5).
		

References

Crossrefs

Cf. A025052 (n having no representations), A093670 (n having one representation), A094380, A094381.

Programs

  • Haskell
    import Data.List (elemIndex)
    import Data.Maybe (fromJust)
    a094379 = (+ 1) . fromJust . (`elemIndex` a066955_list)
    -- Reinhard Zumkeller, Mar 23 2012
  • Mathematica
    cntMax=10; nSol=Table[{0, 0, 0}, {cntMax+1}]; Do[lim=Ceiling[(n-1)/2]; cnt=0; Do[If[n>a*b && Mod[n-a*b, a+b]==0 && Quotient[n-a*b, a+b]>=b, cnt++; If[cnt>cntMax, Break[]]], {a, 1, lim}, {b, a, lim}]; If[cnt<=cntMax, If[nSol[[cnt+1, 1]]==0, nSol[[cnt+1, 1]]=n]; nSol[[cnt+1, 2]]=n; nSol[[cnt+1, 3]]++;], {n, 10000}]; Table[nSol[[i, 1]], {i, cntMax+1}]

A238097 Number of monic cubic polynomials with coefficients from {1..n} and maximum coefficient equal to n, for which all three roots are integers.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 2, 1, 2, 0, 2, 2, 2, 0, 3, 2, 1, 2, 3, 1, 3, 0, 3, 3, 1, 1, 4, 3, 1, 1, 3, 2, 3, 1, 2, 3, 2, 0, 4, 5, 2, 2, 2, 1, 3, 3, 3, 3, 1, 0, 5, 4, 1, 2, 4, 4, 3, 1, 2, 2, 3, 1, 5, 6, 1, 2, 3, 2, 3, 1, 4, 6, 2, 0, 5, 5, 1, 1, 3
Offset: 1

Views

Author

N. J. A. Sloane, Feb 22 2014

Keywords

Examples

			a(11) = 2 with polynomials x^3 + 6*x^2 + 11*x + 6 = (x+1) * (x+2) * (x+3) and x^3 + 7*x^2 + 11*x + 5 = (x+1)^2 * (x+5). - _Michael Somos_, Feb 23 2014
		

Crossrefs

Programs

  • Mathematica
    Table[p = Flatten[Table[{a, b, c, 1}, {a, n}, {b, n}, {c, n}], 2]; cnt = 0; Do[If[Max[p[[i]]] == n, poly = p[[i]].x^Range[0, 3]; r = Rest[FactorList[poly]]; If[Total[Transpose[r][[2]]] == 3 && Union[Coefficient[Transpose[r][[1]], x]] == {1}, Print[{n, r}]; cnt++]], {i, Length[p]}]; cnt, {n, 20}] (* T. D. Noe, Feb 22 2014 *)
  • PARI
    {a(n) = if( n<1, 0, sum(a1=1, n, sum(a2=1, n, sum(a3=1, n, vecmax([a1, a2, a3]) == n && vecsum( factor( Pol([1, a1, a2, a3]))[, 2]) == 3))))}; /* Michael Somos, Feb 23 2014 */

Extensions

Definition corrected by Giovanni Resta, Feb 22 2014
Extended by T. D. Noe, Feb 22 2014

A369951 Volumes of integer-sided cuboids in which either the surface area divides the volume or vice versa (assuming dimensionless unit of length).

Original entry on oeis.org

1, 2, 4, 8, 16, 18, 27, 32, 36, 216, 250, 256, 288, 400, 432, 450, 486, 576, 882, 1728, 1800, 1944, 2000, 2048, 2304, 2744, 2916, 3200, 3456, 3528, 3600, 3888, 4608, 6144, 6174, 6750, 6912, 7056, 7200, 7350, 7776, 7986, 8000, 8100, 8232, 9000, 9216, 9600, 9800
Offset: 1

Views

Author

Felix Huber, Feb 12 2024

Keywords

Comments

For n <= 9, the surface area divides the volume. The 9 triples with the edge lengths (u,v,w) are (1,1,1), (2,1,1), (2,2,1), (2,2,2), (4,4,1), (6,3,1), (3,3,3), (4,4,2), (6,3,2).
For 10 <= n <= 19 the surfaces and volumes are equal. This is sequence A230400.
For n >= 20 the volume divides the surface area.

Examples

			a(9) = 36, because V = 6*3*2 = 36 and S = 2*(6*3+3*2+6*2) = 72 and S/V = 2.
a(12) = 256, because V = 8*8*4 = 256 and S = 2*(8*8+8*4+8*4) = 256 and S=V.
a(20) = 1728, because V = 12*12*12 = 1728 and S = 6*12*12 = 864 and V/S = 2.
		

Crossrefs

Cf. A230400 (subsequence), A066955.

Programs

  • Maple
    A369951 := proc(V) local a, b, c, k; for a from ceil(V^(1/3)) to V do if V/a = floor(V/a) then for b from ceil(sqrt(V/a)) to floor(V/a) do c := V/(a*b); if c = floor(c) then k := 2*(a*b + c*b + a*c)/(a*b*c); if k = floor(k) or 1/k = floor(1/k) then return V; end if; end if; end do; end if; end do; end proc; seq(A369951(V), V = 1 .. 10000);

Formula

For 10 <= n <= 19, a(n) = A230400(n - 9).

A375785 a(n) is the number of distinct integer-sided cuboids having the same surface as a cube with edge length n.

Original entry on oeis.org

1, 1, 3, 3, 5, 5, 5, 7, 9, 9, 9, 13, 9, 9, 19, 15, 13, 19, 13, 23, 19, 19, 17, 29, 25, 19, 27, 23, 21, 41, 21, 31, 35, 29, 33, 45, 25, 29, 35, 51, 29, 41, 29, 45, 61, 39, 33, 61, 33, 57, 51, 45, 37, 63, 61, 51, 51, 49, 41, 97, 41, 49, 61, 63, 61, 81, 45, 67, 67
Offset: 1

Views

Author

Felix Huber, Sep 17 2024

Keywords

Comments

a(n) is the number of unordered solutions (x, y, z) to x*y + y*z + x*z = 3*n^2 in positive integers x and y.
Conjecture: All terms are odd.

Examples

			a(6) = 5 because exactly the 5 integer-sided cuboids (2, 2, 26), (2, 5, 14), (2, 6, 12), (3, 6, 10), (6, 6, 6) have the same surface as a cube with edge length 6: 2*(2*2 + 2*26 + 2*26) = 2*(2*5 + 5*14 + 2*14) = 2*(2*6 + 6*12 + 2*12) = 2*(3*6 + 6*10 + 3*10) = 2*(6*6 + 6*6 + 6*6) = 6*6^2.
		

Crossrefs

Programs

  • Maple
    See Huber link.

A066360 Number of unordered solutions in positive integers of xy + xz + yz = n with gcd(x,y,z) = 1.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 2, 1, 2, 0, 2, 1, 2, 0, 3, 2, 1, 2, 2, 0, 3, 0, 3, 2, 2, 1, 4, 1, 1, 2, 4, 2, 4, 0, 2, 2, 2, 1, 5, 2, 2, 2, 4, 1, 3, 2, 4, 4, 2, 0, 6, 0, 3, 3, 4, 2, 4, 2, 2, 3, 4, 0, 7, 2, 2, 4, 4, 2, 4, 0, 5, 4, 3, 1, 6, 2, 2, 4, 6, 2, 6, 2, 4, 2, 2, 3, 8, 4, 2, 3, 4, 1
Offset: 1

Views

Author

Colin Mallows, Dec 20 2001

Keywords

Comments

These correspond to Descartes quadruples (-s, s+x+y, s+x+z, s+y+z) where s = sqrt(n), which are primitive if n is a perfect square.
Many empirical regularities are known, e.g., for n = 2^(2k) or n=2^(2k-1), (2 <= k <= 10 and even k <= 20), a(n) = 2^(k-2).
It appears that a(n) > 0 for n > 462. An upper bound on the number of solutions appears to be 1.5*sqrt(n). - T. D. Noe, Jun 14 2006

Examples

			a(81) = 3 because we have the triples (x,y,z) = (1,1,40),(2,3,15),(3,6,7) (and not (3,3,12) because this is not primitive).
		

Crossrefs

Cf. A060790, A062536 (and A007875 for xy = n).

Programs

  • Haskell
    a066360 n = length [(x,y,z) | x <- [1 .. a000196 n],
                                  y <- [x .. div n x],
                                  z <- [y .. n - x*y],
                                  x*y+(x+y)*z == n, gcd (gcd x y) z == 1]
    -- Reinhard Zumkeller, Mar 23 2012
  • Mathematica
    Table[cnt=0; Do[z=(n-x*y)/(x+y); If[IntegerQ[z] && GCD[x,y,z]==1, cnt++ ], {x,Sqrt[n/3]}, {y,x,Sqrt[x^2+n]-x}]; cnt, {n,100}] (* T. D. Noe, Jun 14 2006 *)

Extensions

Corrected and extended by T. D. Noe, Jun 14 2006

A290870 a(n) is the number of ways to represent n as n = x*y + y*z + z*x where 0 < x < y < z.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 2, 0, 0, 2, 1, 0, 2, 0, 2, 1, 0, 1, 2, 1, 0, 2, 2, 0, 3, 0, 1, 3, 0, 1, 4, 0, 1, 2, 2, 1, 2, 2, 2, 3, 0, 0, 5, 0, 2, 3, 2, 1, 2, 2, 1, 4, 2, 0, 6, 0, 1, 4, 2, 3, 2, 0, 4, 3, 2, 1, 5, 2, 0, 4, 4, 0, 5, 2, 2, 4, 0, 3, 6, 2, 1, 3, 3, 1
Offset: 1

Views

Author

Joerg Arndt, Aug 13 2017

Keywords

Comments

a(n) = 0 if and only if n is a term of A000926.
a(n) = 1 if and only if n is a term of A093669.

Examples

			For (x, y, z) = (1, 3, 5), we have x * y + y * z + z * x = 1 * 3 + 3 * 5 + 5 * 1 = 23 and similarily for (x, y, z) = (1, 2, 7), we have x * y + y * z + z * x = 23. Those 2 triples are all for n=23, so a(23) = 2. - _David A. Corneth_, Oct 01 2017
		

Crossrefs

Cf. A066955 (ways to represent n as n = x*y + y*z + z*x where 0 <= x <= y <= z).
Cf. A094377 (greatest number having exactly n representations).
Cf. A094376 (indices of records).

Programs

  • PARI
    N=10^3; V=vector(N);
    { for (x=1, N,
        for (y=x+1, N, t=x*y; if( t > N, break() );
          for (z=y+1, N,
            tt = t + y*z + z*x;  if( tt > N, break() );
            V[tt]+=1;
    ); ); ); }
    V \\ Joerg Arndt, Oct 01 2017
    
  • PARI
    a(n) = {my(res = 0);
    for(x = 1, sqrtint(n\3), for(y = x + 1, (n - x^2) \ (2 * x), z = (n - x*y) / (x + y); if(z > y && z == z\1, res++))); res} \\ David A. Corneth, Oct 01 2017

Formula

For the triples (x,y,z) we have x < sqrt(n / 3), y < (n - x^2) / (2 * x), z = (n - x*y) / (x + y) which must be integer. - David A. Corneth, Oct 01 2017

A382407 a(n) is the number of partitions n = x + y + z of positive integers such that x*y + y*z + x*z is a perfect square.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 3, 0, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 3, 0, 5, 1, 1, 2, 3, 3, 2, 1, 1, 3, 6, 1, 4, 2, 7, 4, 4, 0, 3, 5, 3, 4, 2, 1, 7, 2, 1, 5, 9, 3, 5, 3, 4, 1, 9, 2, 6, 3, 5, 6, 5, 4, 7, 5, 1, 5, 6, 3, 13, 7, 8, 4, 6, 0, 4, 4, 11, 5, 13, 2
Offset: 1

Views

Author

Felix Huber, Apr 04 2025

Keywords

Comments

a(n) is the number of distinct cuboids with edge length 4*n whose surface area is half of a square.
Conjecture: a(k) = 0 iff k is an element of {2, 4, 8, 13} union A000244 union A005030.

Examples

			The a(14) = 3 partitions [x, y, z] are [1, 1, 12], [1, 4, 9] and [4, 4, 6] because 1*1 + 1*12 + 1*12 = 5^2, 1*4 + 4*9 + 1*9 = 7^2 and 4*4 + 4*6 + 4*6 = 8^2.
		

Crossrefs

Programs

  • Maple
    A382407:=proc(n)
        local a,x,y,z;
        a:=0;
        for x to n/3 do
            for y from x to (n-x)/2 do
                z:=n-x-y;
                if issqr(x*y+x*z+y*z) then
                    a:=a+1
                fi
            od
        od;
        return a
    end proc;
    seq(A382407(n),n=1..87);
Showing 1-8 of 8 results.