cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: John Cannon

John Cannon's wiki page.

John Cannon has authored 2468 sequences. Here are the ten most recent ones:

A299253 Growth series for group with presentation < S, T : S^2 = T^3 = (S*T)^12 = 1 >.

Original entry on oeis.org

1, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 126, 183, 242, 357, 472, 696, 920, 1356, 1792, 2640, 3486, 5136, 6788, 10002, 13216, 19473, 25730, 37911, 50092, 73806, 97518, 143688, 189860, 279744, 369628, 544620, 719612, 1060296, 1400980, 2064243, 2727504, 4018785, 5310068, 7824000, 10337932, 15232200, 20126468
Offset: 0

Author

John Cannon and N. J. A. Sloane, Feb 06 2018

Keywords

Crossrefs

Programs

  • Magma
    // See Magma program in A298805.
    
  • PARI
    Vec((1 + 3*x + 4*x^2 + 6*x^3 + 7*x^4 + 9*x^5 + 10*x^6 + 12*x^7 + 13*x^8 + 15*x^9 + 15*x^10 + 15*x^11 + 15*x^12 + 12*x^13 + 12*x^14 + 9*x^15 + 9*x^16 + 6*x^17 + 6*x^18 + 3*x^19 + 3*x^20 - 2*x^22) / ((1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4)*(1 - x^2 - x^4 - x^6 - x^8 - x^10 + x^12)) + O(x^60)) \\ Colin Barker, Feb 06 2018

Formula

G.f.: (-2*x^22 + 3*x^20 + 3*x^19 + 6*x^18 + 6*x^17 + 9*x^16 + 9*x^15 + 12*x^14 + 12*x^13 + 15*x^12 + 15*x^11 + 15*x^10 + 15*x^9 + 13*x^8 + 12*x^7 + 10*x^6 + 9*x^5 + 7*x^4 + 6*x^3 + 4*x^2 + 3*x + 1)/(x^20 - x^16 - 2*x^14 - 3*x^12 - 5*x^10 - 3*x^8 - 2*x^6 - x^4 + 1).
a(n) = a(n-4) + 2*a(n-6) + 3*a(n-8) + 5*a(n-10) + 3*a(n-12) + 2*a(n-14) + a(n-16) - a(n-20) for n>20. - Colin Barker, Feb 06 2018

A299252 Growth series for group with presentation < S, T : S^2 = T^3 = (S*T)^11 = 1 >.

Original entry on oeis.org

1, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 94, 120, 178, 232, 344, 448, 664, 864, 1280, 1662, 2459, 3202, 4741, 6168, 9132, 11880, 17588, 22880, 33870, 44068, 65246, 84880, 125664, 163484, 242036, 314880, 466176, 606478, 897892, 1168124, 1729394, 2249880, 3330929, 4333418, 6415591, 8346452, 12356856, 16075828, 23800132
Offset: 0

Author

John Cannon and N. J. A. Sloane, Feb 06 2018

Keywords

Crossrefs

Programs

  • Magma
    // See Magma program in A298805.
    
  • PARI
    Vec((1 + 4*x + 7*x^2 + 10*x^3 + 13*x^4 + 16*x^5 + 19*x^6 + 22*x^7 + 25*x^8 + 27*x^9 + 29*x^10 + 33*x^11 + 33*x^12 + 33*x^13 + 33*x^14 + 33*x^15 + 33*x^16 + 33*x^17 + 33*x^18 + 31*x^19 + 27*x^20 + 24*x^21 + 21*x^22 + 18*x^23 + 15*x^24 + 12*x^25 + 9*x^26 + 6*x^27 + 3*x^28 - 2*x^29 - 2*x^30) / ((1 + x + x^2)*(1 + x^3 + x^6)*(1 - x^2 - x^4 - x^6 - x^8 + x^10 - x^12 - x^14 - x^16 - x^18 + x^20)) + O(x^60)) \\ Colin Barker, Feb 06 2018

Formula

G.f.: (-2*x^30 - 2*x^29 + 3*x^28 + 6*x^27 + 9*x^26 + 12*x^25 + 15*x^24 + 18*x^23 + 21*x^22 + 24*x^21 + 27*x^20 + 31*x^19 + 33*x^18 + 33*x^17 + 33*x^16 + 33*x^15 + 33*x^14 + 33*x^13 + 33*x^12 + 33*x^11 + 29*x^10 + 27*x^9 + 25*x^8 + 22*x^7 + 19*x^6 + 16*x^5 + 13*x^4 + 10*x^3 + 7*x^2 + 4*x + 1)/(x^28 + x^27 - x^24 - x^23 - 2*x^22 - 2*x^21 - 3*x^20 - 4*x^19 - 3*x^18 - 2*x^17 - 3*x^16 - 2*x^15 - 3*x^14 - 2*x^13 - 3*x^12 - 2*x^11 - 3*x^10 - 4*x^9 - 3*x^8 - 2*x^7 - 2*x^6 - x^5 - x^4 + x + 1).
a(n) = -a(n-1) + a(n-4) + a(n-5) + 2*a(n-6) + 2*a(n-7) + 3*a(n-8) + 4*a(n-9) + 3*a(n-10) + 2*a(n-11) + 3*a(n-12) + 2*a(n-13) + 3*a(n-14) + 2*a(n-15) + 3*a(n-16) + 2*a(n-17) + 3*a(n-18) + 4*a(n-19) + 3*a(n-20) + 2*a(n-21) + 2*a(n-22) + a(n-23) + a(n-24) - a(n-27) - a(n-28) for n>30. - Colin Barker, Feb 06 2018

A298812 Growth series for group with presentation < S, T : S^2 = T^3 = (S*T)^10 = 1 >.

Original entry on oeis.org

1, 3, 4, 6, 8, 12, 16, 24, 32, 48, 62, 87, 114, 165, 216, 312, 408, 588, 766, 1104, 1444, 2082, 2720, 3921, 5122, 7383, 9642, 13902, 18164, 26184, 34204, 49308, 64412, 92856, 121298, 174867, 228438, 329313, 430188, 620160, 810132, 1167888, 1525642, 2199372, 2873104, 4141866, 5410628, 7799973, 10189318, 14688939
Offset: 0

Author

John Cannon and N. J. A. Sloane, Feb 06 2018

Keywords

Comments

The initial coefficients for the group S, T : S^2 = T^3 = (S*T)^m = 1 > approach A029744 as m increases.

Crossrefs

Programs

  • Magma
    // See Magma program in A298805.
    
  • PARI
    Vec((1 + 3*x + 4*x^2 + 6*x^3 + 7*x^4 + 9*x^5 + 10*x^6 + 12*x^7 + 12*x^8 + 12*x^9 + 12*x^10 + 9*x^11 + 9*x^12 + 6*x^13 + 6*x^14 + 3*x^15 + 3*x^16 - 2*x^18) / ((1 + x^2)^2*(1 + x^4)*(1 - 2*x^2 + x^4 - 2*x^6 + x^8)) + O(x^60)) \\ Colin Barker, Feb 06 2018

Formula

G.f.: (-2*x^18 + 3*x^16 + 3*x^15 + 6*x^14 + 6*x^13 + 9*x^12 + 9*x^11 + 12*x^10 + 12*x^9 + 12*x^8 + 12*x^7 + 10*x^6 + 9*x^5 + 7*x^4 + 6*x^3 + 4*x^2 + 3*x + 1)/(x^16 - x^12 - 2*x^10 - 4*x^8 - 2*x^6 - x^4 + 1).
a(n) = a(n-4) + 2*a(n-6) + 4*a(n-8) + 2*a(n-10) + a(n-12) - a(n-16) for n>16. - Colin Barker, Feb 06 2018

A298811 Growth series for group with presentation < S, T : S^2 = T^3 = (S*T)^9 = 1 >.

Original entry on oeis.org

1, 3, 4, 6, 8, 12, 16, 24, 32, 46, 56, 82, 104, 152, 192, 280, 350, 507, 642, 933, 1176, 1708, 2152, 3122, 3940, 5726, 7216, 10480, 13212, 19188, 24190, 35140, 44300, 64338, 81112, 117809, 148522, 215717, 271960, 394998, 497972, 723268, 911828, 1324360, 1669626, 2425008, 3057212, 4440362, 5597988, 8130648
Offset: 0

Author

John Cannon and N. J. A. Sloane, Feb 06 2018

Keywords

Crossrefs

Programs

  • Magma
    // See Magma program in A298805.
    
  • PARI
    Vec((1 + 4*x + 7*x^2 + 10*x^3 + 13*x^4 + 16*x^5 + 19*x^6 + 21*x^7 + 23*x^8 + 27*x^9 + 27*x^10 + 27*x^11 + 27*x^12 + 27*x^13 + 27*x^14 + 25*x^15 + 21*x^16 + 18*x^17 + 15*x^18 + 12*x^19 + 9*x^20 + 6*x^21 + 3*x^22 - 2*x^23 - 2*x^24) / ((1 - x + x^2)*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)*(1 - 2*x^2 + x^6 - 2*x^10 + x^12)) + O(x^60)) \\ Colin Barker, Feb 06 2018

Formula

G.f.: (-2*x^24 - 2*x^23 + 3*x^22 + 6*x^21 + 9*x^20 + 12*x^19 + 15*x^18 + 18*x^17 + 21*x^16 + 25*x^15 + 27*x^14 + 27*x^13 + 27*x^12 + 27*x^11 + 27*x^10 + 27*x^9 + 23*x^8 + 21*x^7 + 19*x^6 + 16*x^5 + 13*x^4 + 10*x^3 + 7*x^2 + 4*x + 1)/(x^22 + x^21 - x^18 - x^17 - 2*x^16 - 3*x^15 - 2*x^14 - x^13 - 2*x^12 - x^11 - 2*x^10 - x^9 - 2*x^8 - 3*x^7 - 2*x^6 - x^5 - x^4 + x + 1).
a(n) = -a(n-1) + a(n-4) + a(n-5) + 2*a(n-6) + 3*a(n-7) + 2*a(n-8) + a(n-9) + 2*a(n-10) + a(n-11) + 2*a(n-12) + a(n-13) + 2*a(n-14) + 3*a(n-15) + 2*a(n-16) + a(n-17) + a(n-18) - a(n-21) - a(n-22) for n>24. - Colin Barker, Feb 06 2018

A298810 Growth series for group with presentation < S, T : S^2 = T^3 = (S*T)^8 = 1 >.

Original entry on oeis.org

1, 3, 4, 6, 8, 12, 16, 24, 30, 39, 50, 69, 88, 120, 150, 204, 260, 354, 448, 609, 768, 1047, 1328, 1806, 2284, 3108, 3930, 5352, 6776, 9219, 11662, 15873, 20082, 27336, 34592, 47076, 59560, 81066, 102570, 139605, 176642, 240411, 304180, 414006, 523830
Offset: 0

Author

John Cannon and N. J. A. Sloane, Feb 06 2018

Keywords

Crossrefs

Programs

  • Magma
    // See Magma program in A298805.
    
  • PARI
    Vec((1 + 3*x + 4*x^2 + 6*x^3 + 7*x^4 + 9*x^5 + 9*x^6 + 9*x^7 + 9*x^8 + 6*x^9 + 6*x^10 + 3*x^11 + 3*x^12 - 2*x^14) / ((1 - x + x^2)*(1 + x + x^2)*(1 - x^2 - x^4 - x^6 + x^8)) + O(x^60)) \\ Colin Barker, Feb 06 2018

Formula

G.f.: (-2*x^14 + 3*x^12 + 3*x^11 + 6*x^10 + 6*x^9 + 9*x^8 + 9*x^7 + 9*x^6 + 9*x^5 + 7*x^4 + 6*x^3 + 4*x^2 + 3*x + 1)/(x^12 - x^8 - 3*x^6 - x^4 +1).
a(n) = a(n-4) + 3*a(n-6) + a(n-8) - a(n-12) for n>12. - Colin Barker, Feb 06 2018

A298809 Growth series for group with presentation < S, T : S^2 = T^3 = (S*T)^5 = 1 >.

Original entry on oeis.org

1, 3, 4, 6, 8, 10, 8, 10, 6, 3, 1
Offset: 0

Author

John Cannon and N. J. A. Sloane, Feb 06 2018

Keywords

Comments

This group is finite, so the growth series is a polynomial.
Coordination sequence for truncated dodecahedron (see Karzes link). - N. J. A. Sloane, Nov 20 2019

Crossrefs

Programs

  • Magma
    // See Magma program in A298805.

A298808 Growth series for group with presentation < S, T : S^2 = T^3 = (S*T)^4 = 1 >.

Original entry on oeis.org

1, 3, 4, 6, 6, 3, 1
Offset: 0

Author

John Cannon and N. J. A. Sloane, Feb 06 2018

Keywords

Comments

This group is finite, so the growth series is a polynomial.
Coordination sequence for truncated cube (see Karzes link). The coordination sequence for the cuboctahedron is 1,4,6,1, which is too short to have its own entry. - N. J. A. Sloane, Nov 20 2019

Crossrefs

Programs

  • Magma
    // See Magma program in A298805.

A298807 Growth series for group with presentation < S, T : S^3 = T^3 = (S*T)^6 = 1 >.

Original entry on oeis.org

1, 4, 8, 16, 32, 64, 126, 242, 472, 920, 1792, 3486, 6788, 13216, 25730, 50092, 97518, 189860, 369628, 719612, 1400980, 2727504, 5310068, 10337932, 20126468, 39183340, 76284330, 148514636, 289136638, 562907480, 1095899956, 2133559698, 4153734080, 8086723216, 15743687792, 30650697262, 59672502090
Offset: 0

Author

John Cannon and N. J. A. Sloane, Feb 04 2018

Keywords

Crossrefs

Programs

  • Magma
    // See Magma program in A298805.
    
  • Mathematica
    LinearRecurrence[{0,1,2,3,5,3,2,1,0,-1},{1,4,8,16,32,64,126,242,472,920,1792,3486},40] (* Harvey P. Dale, Jul 02 2025 *)
  • PARI
    Vec((1 + 4*x + 7*x^2 + 10*x^3 + 13*x^4 + 15*x^5 + 15*x^6 + 12*x^7 + 9*x^8 + 6*x^9 + 3*x^10 - 2*x^11) / ((1 + x + x^2 + x^3 + x^4)*(1 - x - x^2 - x^3 - x^4 - x^5 + x^6)) + O(x^40)) \\ Colin Barker, Feb 06 2018

Formula

G.f.: (-2*x^11 + 3*x^10 + 6*x^9 + 9*x^8 + 12*x^7 + 15*x^6 + 15*x^5 + 13*x^4 + 10*x^3 + 7*x^2 + 4*x + 1)/(x^10 - x^8 - 2*x^7 - 3*x^6 - 5*x^5 - 3*x^4 - 2*x^3 - x^2 + 1).
a(n) = a(n-2) + 2*a(n-3) + 3*a(n-4) + 5*a(n-5) + 3*a(n-6) + 2*a(n-7) + a(n-8) - a(n-10) for n>11. - Colin Barker, Feb 06 2018

A298806 Growth series for group with presentation < S, T : S^3 = T^6 = (S*T)^6 = 1 >.

Original entry on oeis.org

1, 4, 10, 25, 60, 148, 358, 869, 2106, 5110, 12396, 30070, 72942, 176939, 429214, 1041172, 2525640, 6126607, 14861710, 36051016, 87451296, 212136296, 514592810, 1248281249, 3028037016, 7345306340, 17817987338, 43222250797, 104847025002, 254334247970, 616955127612, 1496588180810, 3630371290710
Offset: 0

Author

John Cannon and N. J. A. Sloane, Feb 04 2018

Keywords

Crossrefs

Programs

  • Magma
    // See Magma program in A298805.
    
  • PARI
    Vec((1 - x + x^2)*(1 + x + x^2)*(1 + x - x^2 + x^3 - x^4 + x^5 + x^6) / (1 - 3*x + 2*x^2 - x^3 - 2*x^4 + 3*x^5 - 2*x^6 - x^7 + 2*x^8 - 3*x^9 + x^10) + O(x^40)) \\ Colin Barker, Feb 06 2018

Formula

G.f.: (x^10 + x^9 + 2*x^7 - x^6 + 3*x^5 - x^4 + 2*x^3 + x + 1)/(x^10 - 3*x^9 + 2*x^8 - x^7 - 2*x^6 + 3*x^5 - 2*x^4 - x^3 + 2*x^2 - 3*x + 1).
a(n) = 3*a(n-1) - 2*a(n-2) + a(n-3) + 2*a(n-4) - 3*a(n-5) + 2*a(n-6) + a(n-7) - 2*a(n-8) + 3*a(n-9) - a(n-10) for n>10. - Colin Barker, Feb 06 2018

A298805 Growth series for group with presentation < S, T : S^2 = T^3 = (S*T)^7 = 1 >.

Original entry on oeis.org

1, 3, 4, 6, 8, 12, 16, 22, 24, 34, 40, 56, 62, 83, 98, 133, 152, 202, 236, 322, 368, 496, 570, 776, 892, 1202, 1384, 1871, 2158, 2915, 3352, 4534, 5218, 7060, 8120, 10976, 12636, 17084, 19664, 26580, 30592, 41367, 47604, 64365, 74072, 100152, 115264, 155836, 179352, 242488, 279076, 377324, 434246, 587126
Offset: 0

Author

John Cannon and N. J. A. Sloane, Feb 04 2018

Keywords

Crossrefs

Programs

  • Magma
    // To get the growth function for the group with presentation
    // < S, T | S^a = T^b = (S*I)^c = 1 >
    a:=2; b:=3; c:=7;
    R := RationalFunctionField(Integers());
    PSR := PowerSeriesRing(Integers():Precision := 100);
    FG := FreeGroup(2);
    TG := quo;
    f, A :=IsAutomaticGroup(TG);
    gf := GrowthFunction(A);
    R!gf;
    Coefficients(PSR!gf);
    
  • Mathematica
    LinearRecurrence[{-1,0,0,1,2,1,0,1,0,1,2,1,0,0,-1,-1},{1,3,4,6,8,12,16,22,24,34,40,56,62,83,98,133,152,202,236},60] (* Harvey P. Dale, Jun 15 2021 *)
  • PARI
    Vec((1 + 4*x + 7*x^2 + 10*x^3 + 13*x^4 + 15*x^5 + 17*x^6 + 21*x^7 + 21*x^8 + 21*x^9 + 21*x^10 + 19*x^11 + 15*x^12 + 12*x^13 + 9*x^14 + 6*x^15 + 3*x^16 - 2*x^17 - 2*x^18) / ((1 + x + x^2 + x^3 + x^4)*(1 - x^2 - x^4 + x^6 - x^8 - x^10 + x^12)) + O(x^60)) \\ Colin Barker, Feb 06 2018

Formula

G.f.: (-2*x^18 - 2*x^17 + 3*x^16 + 6*x^15 + 9*x^14 + 12*x^13 + 15*x^12 + 19*x^11 + 21*x^10 + 21*x^9 + 21*x^8 + 21*x^7 + 17*x^6 + 15*x^5 + 13*x^4 + 10*x^3 + 7*x^2 + 4*x + 1)/(x^16 + x^15 - x^12 - 2*x^11 - x^10 - x^8 - x^6 - 2*x^5 - x^4 + x + 1).
The denominator can be factored: G.f. also = -(2*x^18 + 2*x^17 - 3*x^16 - 6*x^15 - 9*x^14 - 12*x^13 - 15*x^12 - 19*x^11 - 21*x^10 - 21*x^9 - 21*x^8 - 21*x^7 - 17*x^6 - 15*x^5 - 13*x^4 - 10*x^3 - 7*x^2 - 4*x - 1) / ((x^4 + x^3 + x^2 + x + 1) * (x^12 - x^10 - x^8 + x^6 - x^4 - x^2 + 1)).
a(n) = -a(n-1) + a(n-4) + 2*a(n-5) + a(n-6) + a(n-8) + a(n-10) + 2*a(n-11) + a(n-12) - a(n-15) - a(n-16) for n>18. - Colin Barker, Feb 06 2018