cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 120 results. Next

A161435 Number of reduced words of length n in the Weyl group A_3 (or D_3).

Original entry on oeis.org

1, 3, 5, 6, 5, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

a(n) is also the number of vertices of a truncated octahedron (the Voronoi cell for the lattice A_3*) at edge distance n from a given vertex. See also row 4 of the triangle in A008302. - N. J. A. Sloane, Oct 12 2015, corrected Aug 26 2016.
If the zeros are omitted, this is the coordination sequence for the truncated octahedron (see Karzes link). - N. J. A. Sloane, Jan 08 2020
Computed with Magma using commands similar to those used to compute A161409.

References

  • N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche I.)
  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.

Crossrefs

Programs

  • Maple
    # Growth series for D_k, truncated to terms of order M. - N. J. A. Sloane, Aug 07 2021
    f := proc(m::integer) (1-x^m)/(1-x) ; end proc:
    g := proc(k,M) local a,i; global f;
    a:=f(k)*mul(f(2*i),i=1..k-1);
    seriestolist(series(a,x,M+1));
    end proc;
  • Mathematica
    CoefficientList[Series[(1 - x^2) (1 - x^3) (1 - x^4) / (1 - x)^3, {x, 0, 20}], x] (* Vincenzo Librandi, Aug 23 2016 *)

Formula

G.f. for A_m is the polynomial Product_{k=1..m} (1-x^(k+1))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A008302.

A162380 Number of reduced words of length n in the Weyl group D_33.

Original entry on oeis.org

1, 33, 560, 6512, 58343, 429319, 2701215, 14938495, 74085099, 334526731, 1391777608, 5386279880, 19542335516, 66903867676, 217315477325, 672858527085, 1993883448271, 5674663272047, 15558879389713, 41208936343729
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 01 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche IV.)
  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.

Crossrefs

Formula

G.f. for D_m is the polynomial f(n) * Product( f(2i), i=1..n-1 )/ f(1)^n, where f(k) = 1-x^k. Only finitely many terms are nonzero. This is a row of the triangle in A162206.

A162381 Number of reduced words of length n in the Weyl group D_34.

Original entry on oeis.org

1, 34, 594, 7106, 65449, 494768, 3195983, 18134478, 92219577, 426746308, 1818523916, 7204803796, 26747139312, 93651006988, 310966484313, 983825011398, 2977708459669, 8652371731716, 24211251121429, 65420187465158
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 01 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche IV.)
  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.

Crossrefs

Formula

G.f. for D_m is the polynomial f(n) * Product( f(2i), i=1..n-1 )/ f(1)^n, where f(k) = 1-x^k. Only finitely many terms are nonzero. This is a row of the triangle in A162206.

A162384 Number of reduced words of length n in the Weyl group D_35.

Original entry on oeis.org

1, 35, 629, 7735, 73184, 567952, 3763935, 21898413, 114117990, 540864298, 2359388214, 9564192010, 36311331322, 129962338310, 440928822623, 1424753834021, 4402462293690, 13054834025406, 37266085146835
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 01 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche IV.)
  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.

Crossrefs

Formula

G.f. for D_m is the polynomial f(n) * Product( f(2i), i=1..n-1 )/ f(1)^n, where f(k) = 1-x^k. Only finitely many terms are nonzero. This is a row of the triangle in A162206.

A162388 Number of reduced words of length n in the Weyl group D_36.

Original entry on oeis.org

1, 36, 665, 8400, 81584, 649536, 4413471, 26311884, 140429874, 681294172, 3040682386, 12604874396, 48916205718, 178878544028, 619807366651, 2044561200672, 6447023494362, 19501857519768, 56767942666603
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 01 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche IV.)
  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.

Crossrefs

Formula

G.f. for D_m is the polynomial f(n) * Product( f(2i), i=1..n-1 )/ f(1)^n, where f(k) = 1-x^k. Only finitely many terms are nonzero. This is a row of the triangle in A162206.

A162389 Number of reduced words of length n in the Weyl group D_37.

Original entry on oeis.org

1, 37, 702, 9102, 90686, 740222, 5153693, 31465577, 171895451, 853189623, 3893872009, 16498746405, 65414952123, 244293496151, 864100862802, 2908662063474, 9355685557836, 28857543077604, 85625485744207
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 01 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche IV.)
  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.

Crossrefs

Formula

G.f. for D_m is the polynomial f(n) * Product( f(2i), i=1..n-1 )/ f(1)^n, where f(k) = 1-x^k. Only finitely many terms are nonzero. This is a row of the triangle in A162206.

A162392 Number of reduced words of length n in the Weyl group D_38.

Original entry on oeis.org

1, 38, 740, 9842, 100528, 840750, 5994443, 37460020, 209355471, 1062545094, 4956417103, 21455163508, 86870115631, 331163611782, 1195264474584, 4103926538058, 13459612095894, 42317155173498, 127942640917705
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 01 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche IV.)
  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.

Crossrefs

Formula

G.f. for D_m is the polynomial f(n) * Product( f(2i), i=1..n-1 )/ f(1)^n, where f(k) = 1-x^k. Only finitely many terms are nonzero. This is a row of the triangle in A162206.

A162399 Number of reduced words of length n in the Weyl group D_39.

Original entry on oeis.org

1, 39, 779, 10621, 111149, 951899, 6946342, 44406362, 253761833, 1316306927, 6272724030, 27727887538, 114598003169, 445761614951, 1641026089535, 5744952627593, 19204564723487, 61521719896985, 189464360814690
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 01 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche IV.)
  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.

Crossrefs

Formula

G.f. for D_m is the polynomial f(n) * Product( f(2i), i=1..n-1 )/ f(1)^n, where f(k) = 1-x^k. Only finitely many terms are nonzero. This is a row of the triangle in A162206.

A162402 Number of reduced words of length n in the Weyl group D_40.

Original entry on oeis.org

1, 40, 819, 11440, 122589, 1074488, 8020830, 52427192, 306189025, 1622495952, 7895219982, 35623107520, 150221110689, 595982725640, 2237008815175, 7981961442768, 27186526166255, 88708246063240, 278172606877930
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 01 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche IV.)
  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.

Crossrefs

Formula

G.f. for D_m is the polynomial f(n) * Product( f(2i), i=1..n-1 )/ f(1)^n, where f(k) = 1-x^k. Only finitely many terms are nonzero. This is a row of the triangle in A162206.

A162403 Number of reduced words of length n in the Weyl group D_41.

Original entry on oeis.org

1, 41, 860, 12300, 134889, 1209377, 9230207, 61657399, 367846424, 1990342376, 9885562358, 45508669878, 195729780567, 791712506207, 3028721321382, 11010682764150, 38197208930405, 126905454993645, 405078061871575
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 01 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche IV.)
  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.

Crossrefs

Programs

  • Maple
    f:= k -> 1-x^k:
    g:= n -> f(n)*mul(f(2*i),i=1..n-1)/f(1)^n:
    S:= expand(normal(g(41))):
    seq(coeff(S,x,j),j=0..degree(S,x)); # Robert Israel, Oct 07 2015
  • Mathematica
    n = 41;
    x = y + y O[y]^(n^2);
    (1-x^n) Product[1-x^(2k), {k, 1, n-1}]/(1-x)^n // CoefficientList[#, y]& (* Jean-François Alcover, Mar 25 2020, from A162206 *)

Formula

G.f. for D_m is the polynomial f(n) * Product( f(2i), i=1..n-1 )/ f(1)^n, where f(k) = 1-x^k. Only finitely many terms are nonzero. This is a row of the triangle in A162206.
Showing 1-10 of 120 results. Next