A332868 Number of involutions (plus identity) in a fixed Sylow 2-subgroup of the symmetric group of degree 2n.
1, 2, 6, 12, 44, 88, 264, 528, 2064, 4128, 12384, 24768, 90816, 181632, 544896, 1089792, 4292864, 8585728, 25757184, 51514368, 188886016, 377772032, 1133316096, 2266632192, 8860471296, 17720942592, 53162827776, 106325655552, 389860737024, 779721474048, 2339164422144
Offset: 0
Keywords
Examples
For n=2, the a(2)=6 elements satisfying x^2=1 in a fixed Sylow 2-subgroup of S_4 (which subgroup is isomorphic to the dihedral group of degree 4) are the identity and (13), (24), (12)(34), (13)(24), (14)(23).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2412
Programs
-
Maple
b:= proc(n) b(n):=`if`(n=0, 1, b(n-1)^2+2^(2^(n-1)-1)) end: a:= n-> (l-> mul(`if`(l[i]=1, b(i), 1), i=1..nops(l)))(Bits[Split](n)): seq(a(n), n=0..35); # Alois P. Heinz, Feb 27 2020
-
Mathematica
b[n_] := b[n] = If[n == 0, 1, b[n - 1]^2 + 2^(2^(n - 1) - 1)]; a[n_] := Function[l, Product[If[l[[i]] == 1, b[i], 1], {i, 1, Length[l]}]][ Reverse @ IntegerDigits[n, 2]]; a /@ Range[0, 35] (* Jean-François Alcover, Apr 10 2020, after Alois P. Heinz *)
-
PARI
a(n)={my(v=vector(logint(max(1,n), 2)+1)); v[1]=2; for(n=2, #v, v[n]=v[n-1]^2 + 2^(2^(n-1)-1)); prod(k=1, #v, if(bittest(n,k-1), v[k], 1))} \\ Andrew Howroyd, Feb 27 2020
Formula
a(n) = A332759(2*n).
a(n) = Product(A332757(k+1)) where k ranges over the positions of 1 bits in the binary expansion of n.
a(n) = big-Theta(C^n) for C = 2.59745646488..., i.e., A*C^n < a(n) < B*C^n for constants A, B (but it's not the case that a(n) ~ C^n as lim inf a(n)/C^n and lim sup a(n)/C^n differ).
Extensions
Terms a(17) and beyond from Andrew Howroyd, Feb 27 2020
Comments