A332757
Number of involutions (plus identity) in the n-fold iterated wreath product of C_2.
Original entry on oeis.org
1, 2, 6, 44, 2064, 4292864, 18430828806144, 339695459704759501186924544, 115393005344028056118476170527365821430429589033713664, 13315545682326887517994506072805639054664915214679444711916992466809542959290217586307654871548759705124864
Offset: 0
For n=2, the a(2)=6 elements satisfying x^2=1 in C_2 wr C_2 (which is isomorphic to the dihedral group of degree 4) are the identity and (13), (24), (12)(34), (13)(24), (14)(23).
-
Nest[Append[#1, #1[[-1]]^2 + 2^(2^(#2 - 1) - 1)] & @@ {#, Length@ #} &, {1}, 9] (* Michael De Vlieger, Feb 25 2020 *)
A332869
Number of fixed-point free involutions in a fixed Sylow 2-subgroup of the symmetric group of degree 4n.
Original entry on oeis.org
1, 3, 17, 51, 417, 1251, 7089, 21267, 206657, 619971, 3513169, 10539507, 86175969, 258527907, 1464991473, 4394974419, 44854599297, 134563797891, 762528188049, 2287584564147, 18704367906849, 56113103720547, 317974254416433, 953922763249299, 9269516926920129
Offset: 0
For n=1, the a(1)=3 fixed-point free involutions in a fixed Sylow 2-subgroup of S_4 (which subgroup is isomorphic to the dihedral group of degree 4) are (12)(34), (13)(24), and (14)(23).
-
b:= proc(n) b(n):=`if`(n=0, 0, b(n-1)^2+2^(2^(n-1)-1)) end:
a:= n-> (l-> mul(`if`(l[i]=1, b(i+1), 1), i=1..nops(l)))(Bits[Split](n)):
seq(a(n), n=0..32); # Alois P. Heinz, Feb 27 2020
-
A332758[n_] := A332758[n] = If[n==0, 0, A332758[n-1]^2 + 2^(2^(n-1)-1)];
a[n_] := Product[A332758[k+1], {k, Flatten@ Position[ Reverse@ IntegerDigits[n, 2], 1]}];
a /@ Range[0, 24] (* Jean-François Alcover, Apr 10 2020 *)
-
a(n)={my(v=vector(logint(max(1,n), 2)+2)); v[1]=1; for(n=2, #v, v[n]=v[n-1]^2 + 2^(2^(n-1)-1)); prod(k=2, #v, if(bittest(n,k-2), v[k], 1))} \\ Andrew Howroyd, Feb 27 2020
A332840
Number of fixed-point free involutions in a fixed Sylow 2-subgroup of the symmetric group of degree 2n.
Original entry on oeis.org
1, 1, 3, 3, 17, 17, 51, 51, 417, 417, 1251, 1251, 7089, 7089, 21267, 21267, 206657, 206657, 619971, 619971, 3513169, 3513169, 10539507, 10539507, 86175969, 86175969, 258527907, 258527907, 1464991473, 1464991473, 4394974419, 4394974419, 44854599297, 44854599297, 134563797891
Offset: 0
For n=2, the a(2)=3 fixed-point free involutions in a fixed Sylow 2-subgroup of S_4 (which subgroup is isomorphic to the dihedral group of degree 4) are (12)(34), (13)(24), and (14)(23).
-
b:= proc(n) b(n):=`if`(n=0, 0, b(n-1)^2+2^(2^(n-1)-1)) end:
a:= n-> (l-> mul(`if`(l[i]=1, b(i), 1), i=1..nops(l)))(Bits[Split](n)):
seq(a(n), n=0..40); # Alois P. Heinz, Feb 27 2020
-
A332758[n_] := A332758[n] = If[n == 0, 0, A332758[n-1]^2 + 2^(2^(n-1)-1)];
a[n_] := Product[A332758[k], {k, Flatten@ Position[ Reverse@ IntegerDigits[ n, 2], 1]}];
a /@ Range[0, 34] (* Jean-François Alcover, Apr 10 2020 *)
-
a(n)={my(v=vector(logint(max(1,n), 2)+1)); v[1]=1; for(n=2, #v, v[n]=v[n-1]^2 + 2^(2^(n-1)-1)); prod(k=1, #v, if(bittest(n,k-1), v[k], 1))} \\ Andrew Howroyd, Feb 27 2020
Showing 1-3 of 3 results.
Comments