A114717 Number of linear extensions of the divisor lattice of n.
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 5, 1, 2, 2, 1, 1, 5, 1, 5, 2, 2, 1, 14, 1, 2, 1, 5, 1, 48, 1, 1, 2, 2, 2, 42, 1, 2, 2, 14, 1, 48, 1, 5, 5, 2, 1, 42, 1, 5, 2, 5, 1, 14, 2, 14, 2, 2, 1, 2452, 1, 2, 5, 1, 2, 48, 1, 5, 2, 48, 1, 462, 1, 2, 5, 5, 2, 48, 1, 42, 1, 2, 1, 2452, 2, 2, 2, 14, 1, 2452, 2
Offset: 1
Keywords
References
- R. Stanley, Enumerative Combinatorics, Vol. 2, Proposition 7.10.3 and Vol. 1, Sec 3.5 Chains in Distributive Lattices.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- Graham Brightwell and Peter Winkler, Counting linear extensions, Order 8 (1991), no. 3, 225-242.
- Gary Pruesse and Frank Ruskey, Generating linear extensions fast, SIAM J. Comput. 23 (1994), no. 2, 373-386.
- Index entries for sequences computed from exponents in factorization of n
Programs
-
Maple
with(numtheory): b:= proc(s) option remember; `if`(nops(s)<2, 1, add(`if`(nops(select(y-> irem(y, x)=0, s))=1, b(s minus {x}), 0), x=s)) end: a:= proc(n) local l, m; l:= sort(ifactors(n)[2], (x, y)-> x[2]>y[2]); m:= mul(ithprime(i)^l[i][2], i=1..nops(l)); b(divisors(m) minus {1, m}) end: seq(a(n), n=1..100); # Alois P. Heinz, Jun 29 2012
-
Mathematica
b[s_List] := b[s] = If[Length[s]<2, 1, Sum[If[Length[Select[s, Mod[#, x] == 0 &]] == 1, b[Complement[s, {x}]], 0], {x, s}]]; a[n_] := Module[{l, m}, l = Sort[ FactorInteger[n], #1[[2]] > #2[[2]] &]; m = Product[Prime[i]^l[[i]][[2]], {i, 1, Length[l]}]; b[Divisors[m] // Rest // Most]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, May 28 2015, after Alois P. Heinz *)
Comments