cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Rodolfo Ruiz-Huidobro

Rodolfo Ruiz-Huidobro's wiki page.

Rodolfo Ruiz-Huidobro has authored 6 sequences.

A377465 Exponents of Mersenne primes that are emirps.

Original entry on oeis.org

13, 17, 31, 107, 1279, 9941, 3021377, 13466917
Offset: 1

Author

Rodolfo Ruiz-Huidobro, Oct 29 2024

Keywords

Comments

The just discovered Mersenne exponent 136279841 is also an emirp. However, it cannot be included as the next member of the sequence as there are Mersenne exponents over 70000000 that have not been double checked yet.

Examples

			107 is a term because it is in A000043 and in A006567.
		

Crossrefs

Intersection of A000043 and A006567.

Programs

  • Mathematica
    Select[MersennePrimeExponent[Range[48]], PrimeQ[p=FromDigits[Reverse[IntegerDigits[#]]]] && p!=# &] (* Stefano Spezia, Nov 02 2024 *)

A330414 Cyclops primes that become a cube when the middle "0" is removed.

Original entry on oeis.org

68059, 1170649, 4560533, 7530571, 136501919, 158103251, 173703979, 212503933, 226605187, 356101289, 362604691, 382702753, 439806977, 518905117, 811802737, 954403993, 19484041249, 19956016979, 22635071297, 24658046551, 27263097773, 34635012697, 35326042667, 37166072149, 39668022287, 41499095543, 44839062449
Offset: 1

Author

Rodolfo Ruiz-Huidobro, Dec 14 2019

Keywords

Examples

			a(1) = 68059 because 6859 = 19^3 is the first cube that results from the removal of the 0 digit from a cyclops prime.
136501919 is a term because 13651919 is 239^3.
		

Crossrefs

Programs

  • Maple
    count:= 0: Res:= NULL:
    for d from 2 to 6 do
      for n from ceil(10^((2*d-1)/3)) to floor((10^(2*d)-1)^(1/3)) do
        L:=convert(n^3,base,10);
        if member(0,L) then next fi;
        a:= n^3 mod 10^d;
        p:= 10*(n^3-a)+a;
        if isprime(p) then
          count:= count+1; Res:= Res, p;
        fi
    od od:
    Res; # Robert Israel, Dec 24 2019
  • PARI
    seq(n)={my(i=0, L=List()); while(#Lt==0,v), my(m=fromdigits(concat([v[1..k], 0, v[k+1..#v]]))); if(isprime(m), listput(L,m)))); Vec(L)} \\ Andrew Howroyd, Dec 20 2019

A329737 Cyclops primes that remain prime after being "blinded".

Original entry on oeis.org

101, 103, 107, 109, 307, 401, 503, 509, 601, 607, 701, 709, 809, 907, 11071, 11087, 11093, 12037, 12049, 12097, 13099, 14029, 14033, 14051, 14071, 14081, 14083, 14087, 15031, 15053, 15083, 16057, 16063, 16067, 16069, 16097, 17021, 17033, 17041, 17047, 17053
Offset: 1

Author

Rodolfo Ruiz-Huidobro, Nov 20 2019

Keywords

Comments

There are 14 of these primes with 3 digits and 302 with 5 digits.

Examples

			The first term, a(1), is 101 because if you remove the "cyclops' eye" it remains a prime (11) and because 101 is the 1st cyclops prime.
307 is a term because when you remove the "0" it remains a prime: 37.
		

Crossrefs

Intersection of A256186 and A134809.

Programs

  • Magma
    a:=[]; f:=func; g:=func; for n in [1..20000] do if f(n) and IsPrime(g(n)) then Append(~a,n); end if; end for; a; // Marius A. Burtea, Nov 20 2019

A307176 Number of Sophie Germain primes of the form 4k + 1 less than 10^n.

Original entry on oeis.org

1, 5, 17, 89, 589, 3833, 27940, 211439, 1653257, 13283194, 109058142, 911411528, 7731354496
Offset: 1

Author

Rodolfo Ruiz-Huidobro, Mar 27 2019

Keywords

Comments

Sophie Germain primes can alternatively be Lucasian primes, primes of the form 4k + 1, or, the individual prime 2.

Examples

			There are five Sophie Germain Primes of the form 4k + 1 below 10^2: {5, 29, 41, 53, 89}, therefore a(2) = 5.
		

Programs

  • Mathematica
    nonLucSophies = Select[4Range[2500000] + 1, PrimeQ[#] && PrimeQ[2# + 1] &]; Table[Length[Select[nonLucSophies, # < 10^n &]], {n, 0, 7}]

Formula

a(n) < A092816(n).
a(n) <= A091098(n) (with equality for n = 1).
a(n) = A092816(n) - A307121(n) - 1.

A307121 Number of Lucasian primes less than 10^n.

Original entry on oeis.org

1, 4, 19, 100, 581, 3912, 28091, 211700, 1655601, 13286320, 109058381, 911436949, 7731247492
Offset: 1

Author

Rodolfo Ruiz-Huidobro, Mar 26 2019

Keywords

Comments

The Lucasian primes are those Sophie Germain primes of the form 4k + 3. They are interesting because if they are infinite in number, then the sequence of Mersenne numbers with prime exponents contains an infinite number of composite integers.
Conjecture: about half of all Sophie Germain primes are Lucasian primes, and the rest are either 2 or a prime of the form 4k + 1.

Examples

			There are 4 Lucasian primes below 10^2: {3,11,23,83}, therefore a(2) = 4.
		

Crossrefs

Programs

  • Mathematica
    c = 0; r = 10; s = {}; Do[If[p > r, AppendTo[s, c]; r *= 10]; If[PrimeQ[p] && PrimeQ[2p + 1], c++], {p, 3, 1000003, 4}]; s (* Amiram Eldar, Mar 27 2019 *)
    lucSophies = Select[4Range[2500000] - 1, PrimeQ[#] && PrimeQ[2# + 1] &]; Table[Length[Select[lucSophies, # < 10^n &]], {n, 0, 7}]
  • PARI
    a(n) = { my(t=0); forprime(p=2,10^n,p%4==3 && ispseudoprime(1+(2*p)) && t++);t } \\ Dana Jacobsen, Mar 28 2019
    
  • Perl
    use ntheory ":all"; sub a { my($n,$t)=(shift,0); forprimes { $t++ if ($&3) == 3 && is_prime(1+($<<1)) } 10**$n; $t; } # Dana Jacobsen, Mar 28 2019

Extensions

a(9)-a(11) from Amiram Eldar, Mar 27 2019
a(12) from Amiram Eldar, Mar 31 2019
a(13) from Dana Jacobsen, Apr 02 2019

A316917 Let g(n) be the n-th maximal prime gap; a(n) = 1 if g(n) has record merit, 0 if it does not.

Original entry on oeis.org

1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1
Offset: 1

Author

Rodolfo Ruiz-Huidobro, Jul 16 2018

Keywords

Comments

a(n) = 1 if A002386(n) is in A111870, a(n) = 0 if A002386(n) is not in A111870.
The merit M of a prime gap of measure g following the prime p_1 is defined as M=g/ln(p_1). It is the ratio of the measure of the gap to the "average" measure of gaps near that point. As an example, the merit of the sixth maximal gap, of size 14, after prime 113 is 2.96.
a(81) = 0 because there are previous maximal gaps with higher merits. - Rodolfo Ruiz-Huidobro, Jan 23 2024
a(82) = 1 as the merit of the gap is 1572/log(18571673432051830099)=1572/44.37=35.43 (which is a record merit). - Rodolfo Ruiz-Huidobro, May 10 2024
a(83) =1 as the merit for the gap is 1676/log(20733746510561444539) =1676/44.48=37.681 (which is a record merit). - Rodolfo Ruiz-Huidobro, Dec 20 2024

Examples

			The 5th record prime gap from 89 to 97 does not have record merit, so a(5) = 0.
The 10th record prime gap from 1327 to 1361 has record merit, so a(10) = 1.
		

Crossrefs

Programs

  • Mathematica
    Block[{nn = 10^6, s, t, u, v}, s = Prime@ Range[nn]; t = Differences@ s; u = Map[(#2 - #1)/Log[#1] & @@ # &, Partition[Prime@ Range[nn], 2, 1]]; v = Map[Prime@ FirstPosition[u, #][[1]] &, Union@ FoldList[Max, u]]; Boole[! FreeQ[v, s[[FirstPosition[t, #][[1]] ]] ] ] & /@ Union@ FoldList[Max, t]] (* Michael De Vlieger, Jul 19 2018 *)

Extensions

a(81) from Rodolfo Ruiz-Huidobro, Jan 23 2024
a(82) from Rodolfo Ruiz-Huidobro, May 10 2024
a(83) from Rodolfo Ruiz-Huidobro, Dec 09 2024