cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 693 results. Next

A139306 Ultraperfect numbers: a(n) = 2^(2*p - 1), where p is A000043(n).

Original entry on oeis.org

8, 32, 512, 8192, 33554432, 8589934592, 137438953472, 2305843009213693952, 2658455991569831745807614120560689152, 191561942608236107294793378393788647952342390272950272
Offset: 1

Views

Author

Omar E. Pol, Apr 13 2008

Keywords

Comments

Sum of n-th even perfect number and n-th even superperfect number.
Also, sum of n-th perfect number and n-th superperfect number, if there are no odd perfect and odd superperfect numbers, then the n-th perfect number is the difference between a(n) and the n-th superperfect number (see A135652, A135653, A135654 and A135655).

Examples

			a(5) = 33554432 because A000043(5) = 13 and 2^(2*13 - 1) = 2^25 = 33554432.
Also, if there are no odd perfect and odd superperfect numbers then we can write a(5) = A000396(5) + A019279(5) = A000396(5) + A061652(5) = 33554432.
		

Crossrefs

Programs

  • Mathematica
    2^(2 * MersennePrimeExponent[Range[10]] - 1) (* Amiram Eldar, Oct 17 2024 *)

Formula

a(n) = 2^(2*A000043(n) - 1). Also, a(n) = 2^A133033(n), if there are no odd perfect numbers. Also, a(n) = A000396(n) + A019279(n), if there are no odd perfect and odd superperfect numbers. Also, a(n) = A000396(n) + A061652(n), if there are no odd perfect numbers, then we can write: perfect number A000396(n) = a(n) - A061652(n).
a(n) = A061652(n)*(A000668(n)+1) = A061652(n)*A072868(n). - Omar E. Pol, Apr 13 2008

A324201 a(n) = A062457(A000043(n)) = prime(A000043(n))^A000043(n), where A000043 gives the exponent of the n-th Mersenne prime.

Original entry on oeis.org

9, 125, 161051, 410338673, 925103102315013629321, 1271991467017507741703714391419, 49593099428404263766544428188098203, 165163983801975082169196428118414326197216835208154294976154161023
Offset: 1

Views

Author

Antti Karttunen, Feb 18 2019

Keywords

Comments

If there are no odd perfect numbers, then the terms give all solutions n > 1 to A323244(n) = 0.
Conversely, if these are all numbers k > 1 that satisfy A323244(k) = 0 (which can be proved if one can show, for example, that no number in A007916 can satisfy the equation), then no odd perfect numbers exist. See also A336700. - Antti Karttunen, Jan 12 2024

Crossrefs

Subsequence of A001597.
Cf. also A336700, A368989.

Programs

  • Mathematica
    Prime[#]^#&/@MersennePrimeExponent[Range[8]] (* Harvey P. Dale, Mar 15 2024 *)

Formula

a(n) = A062457(A000043(n)).
A323244(a(n)) = 0.
a(n) = A005940(1+A000396(n)). [Provided no odd perfect numbers exist]

A126043 Exponents p of the Mersenne primes 2^p - 1 (see A000043) read mod 3.

Original entry on oeis.org

2, 0, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2
Offset: 1

Views

Author

Artur Jasinski, Dec 17 2006

Keywords

Crossrefs

Cf. A000043, A010872 (n mod 3), A126044-A126059.

Programs

  • Mathematica
    Array[Mod[MersennePrimeExponent@ #, 3] &, 45] (* Michael De Vlieger, Apr 07 2018 *)
  • PARI
    forprime(p=1, 1e3, if(isprime(2^p-1), print1(p%3, ", "))) \\ Felix Fröhlich, Aug 12 2014

Formula

a(n) = A010872(A000043(n)). - Michel Marcus, Aug 12 2014

Extensions

a(45)-a(47) from Ivan Panchenko, Apr 08 2018
a(48) from Amiram Eldar, Oct 14 2024

A126059 Exponents p of the Mersenne primes 2^p - 1 (see A000043) read mod 19.

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 0, 12, 4, 13, 12, 13, 8, 18, 6, 18, 1, 6, 16, 15, 18, 4, 3, 6, 3, 10, 18, 2, 18, 18, 4, 12, 6, 6, 2, 4, 16, 11, 2, 4, 6, 7, 6, 13, 1, 11, 13, 8
Offset: 1

Views

Author

Artur Jasinski, Dec 17 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Array[Mod[MersennePrimeExponent@ #, 19] &, 45] (* Michael De Vlieger, Apr 10 2018 *)

Extensions

a(45)-a(47) from Ivan Panchenko, Apr 09 2018
a(48) from Amiram Eldar, Oct 15 2024

A330819 Numbers of the form M_p^2(M^p+2)^2, where M_p is a Mersenne prime (A000668) and p is a Mersenne exponent (A000043). Also the first element of the spectral basis of A330817.

Original entry on oeis.org

225, 3969, 1046529, 268402689, 4503599493152769, 295147905144993087489, 75557863725364567605249, 21267647932558653957237540927630737409, 28269553036454149273332760011886696242605918383730576346715242738439159809
Offset: 1

Views

Author

Walter Kehowski, Jan 01 2020

Keywords

Comments

The second element of the spectral basis of A330817 is A330820.

Examples

			If p=2, then M_2=3, and a(1) = 3^2(3+2)^2 = 15^2 = 225.
		

Crossrefs

Programs

  • Maple
    A330819:=[]:
    for www to 1 do
    for i from 1 to 31 do
      #ithprime(31)=127
      p:=ithprime(i);
      q:=2^p-1;
      if isprime(q) then x:=2^(2*p+1)*q^2; A330819:=[op(A330819),x]; fi;
    od;
    od;
    A330819;
  • Mathematica
    (m = 2^MersennePrimeExponent[Range[9]] - 1)^2 * (m + 2)^2 (* Amiram Eldar, Jan 03 2020 *)

Formula

a(n) = A000668(n)^2*(A000668(n)+2)^2.

A332211 Lexicographically earliest permutation of primes such that a(n) = 2^n - 1 when n is one of the Mersenne prime exponents (in A000043).

Original entry on oeis.org

2, 3, 7, 5, 31, 11, 127, 13, 17, 19, 23, 29, 8191, 37, 41, 43, 131071, 47, 524287, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 2147483647, 103, 107, 109, 113, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 2305843009213693951, 269, 271, 277, 281, 283, 293, 307, 311, 313
Offset: 1

Views

Author

Antti Karttunen, Feb 09 2020

Keywords

Comments

Sequence is well-defined also in case there are only a finite number of Mersenne primes.

Examples

			For p in A000043: 2, 3, 5, 7, 13, 17, 19, ..., a(p) = (2^p)-1, thus a(2) = 2^2 - 1 = 3, a(3) = 7, a(5) = 31, a(7) = 127, a(13) = 8191, a(17) = 131071, etc., with the rest of positions filled by the least unused prime:
1, 2, 3, 4,  5,  6,   7,  8,  9, 10, 11, 12,   13, 14, 15, 16, 17, ...
2, 3, 7, 5, 31, 11, 127, 13, 17, 19, 23, 29, 8191, 37, 41, 43, 131071, ...
		

Crossrefs

Cf. A000040, A000043, A000668, A332210 (inverse permutation of primes), A332220.
Used to construct permutations A332212, A332214.

Programs

  • PARI
    up_to = 127;
    A332211list(up_to) = { my(v=vector(up_to), xs=Map(), i=1, q); for(n=1,up_to, if(isprime(q=((2^n)-1)), v[n] = q, while(mapisdefined(xs,prime(i)), i++); v[n] = prime(i)); mapput(xs,v[n],n)); (v); };
    v332211 = A332211list(up_to);
    A332211(n) = v332211[n];
    \\ For faster computing of larger values, use precomputed values of A000043:
    v000043 = [2,3,5,7,13,17,19,31,61,89,107,127,521,607,1279,2203,2281,3217];
    up_to = v000043[#v000043];
    A332211list(up_to) = { my(v=vector(up_to), xs=Map(), i=1, q); for(n=1,up_to, if(vecsearch(v000043,n), q = (2^n)-1, while(mapisdefined(xs,prime(i)), i++); q = prime(i)); v[n] = q; mapput(xs,q,n)); (v); };

Formula

For all applicable n >= 1, a(A000043(n)) = A000668(n).

A145041 Primes p (A000043) such that 2^p-1 is prime (A000668) and congruent to 31 mod 6!.

Original entry on oeis.org

5, 17, 89, 521, 4253, 9689, 9941, 11213, 19937, 21701, 859433, 1398269, 2976221, 3021377, 6972593, 32582657, 43112609, 57885161
Offset: 1

Views

Author

Artur Jasinski, Sep 30 2008

Keywords

Comments

Mersenne numbers (with the exception of the first two) are congruent to 31, 127, 271, 607 mod 6!. This sequence is a subsequence of A000043.

Crossrefs

Programs

  • Mathematica
    p = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 43112609}; a = {}; Do[If[Mod[2^p[[n]] - 1, 6! ] == 31, AppendTo[a, p[[n]]]], {n, 1, Length[p]}]; a
    Select[MersennePrimeExponent[Range[48]], PowerMod[2, #, 720] == 32 &] (* Amiram Eldar, Oct 19 2024 *)

Extensions

a(18) from Amiram Eldar, Oct 19 2024

A145042 Primes p (A000043) such that 2^p-1 is prime (A000668) and congruent to 127 mod 6!.

Original entry on oeis.org

7, 19, 31, 127, 607, 1279, 2203, 4423, 110503, 216091, 1257787, 20996011, 24036583
Offset: 1

Views

Author

Artur Jasinski, Sep 30 2008

Keywords

Comments

Mersenne numbers (with the exception of the first two) are congruent to 31, 127, 271, 607 mod 6!. This sequence is a subsequence of A000043.

Crossrefs

Programs

  • Mathematica
    p = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 43112609}; a = {}; Do[If[Mod[2^p[[n]] - 1, 6! ] == 127, AppendTo[a, p[[n]]]], {n, 1, Length[p]}]; a

A253850 Mersenne exponents (A000043) that are the sum of the divisors (A000203) of some n.

Original entry on oeis.org

3, 7, 13, 31, 127
Offset: 1

Views

Author

Jaroslav Krizek, Jan 16 2015

Keywords

Comments

Also primes p that are the sum of the divisors of some n where 2^sigma(n) - 1 is a Mersenne prime (A000668).
Intersection of A023195 and A000043.
If a(6) exists, it must be greater than A000043(48) = 57885161, and also not equal to any of the Mersenne prime exponents 74207281, 77232917, 82589933, 136279841. - Gord Palameta, Oct 22 2024

Examples

			Mersenne exponent 7 is in the sequence because sigma(4) = 7.
Mersenne exponent 31 is in the sequence because there are two numbers n (16 and 25) with sigma(n) = 31.
		

Crossrefs

Programs

  • Magma
    Set(Sort([SumOfDivisors(n): n in[1..10000] | IsPrime((2^SumOfDivisors(n))- 1)]));

A324200 a(n) = 2^(A000043(n)-1) * ((2^A059305(n)) - 1), where A059305 gives the prime index of the n-th Mersenne prime, while A000043 gives its exponent.

Original entry on oeis.org

6, 60, 32752, 137438953408
Offset: 1

Views

Author

Antti Karttunen, Feb 18 2019

Keywords

Comments

If there are no odd perfect numbers then these are the positions of zeros in A324185.
The next term has 314 digits:
11781361728633673532894774498354952494238773929196300355071513798753168641589311119865182769801300280680127783231251635087526446289021607771691249214388576215221396663491984443067742263787264024212477244347842938066577043117995647400274369612403653814737339068225047641453182709824206687753689912418253153056583680.

Crossrefs

Programs

Formula

a(n) = ((2^A000720(A000668(n)))-1) * 2^(A000043(n)-1) = ((2^A059305(n)) - 1) * 2^(A000043(n)-1).
If no odd perfect numbers exist, then a(n) = A243071(A000396(n)), and thus A007814(a(n)) = A007814(A000396(n)).
Showing 1-10 of 693 results. Next