cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A126043 Exponents p of the Mersenne primes 2^p - 1 (see A000043) read mod 3.

Original entry on oeis.org

2, 0, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2
Offset: 1

Views

Author

Artur Jasinski, Dec 17 2006

Keywords

Crossrefs

Cf. A000043, A010872 (n mod 3), A126044-A126059.

Programs

  • Mathematica
    Array[Mod[MersennePrimeExponent@ #, 3] &, 45] (* Michael De Vlieger, Apr 07 2018 *)
  • PARI
    forprime(p=1, 1e3, if(isprime(2^p-1), print1(p%3, ", "))) \\ Felix Fröhlich, Aug 12 2014

Formula

a(n) = A010872(A000043(n)). - Michel Marcus, Aug 12 2014

Extensions

a(45)-a(47) from Ivan Panchenko, Apr 08 2018
a(48) from Amiram Eldar, Oct 14 2024

A126044 Exponents p of the Mersenne primes 2^p - 1 (see A000043) read mod 4.

Original entry on oeis.org

2, 3, 1, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 3, 3, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 3, 4, 3, 3, 1, 3, 1, 1, 1, 1, 1, 3, 3, 3, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Artur Jasinski, Dec 17 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Array[Mod[MersennePrimeExponent@ #, 4] &, 45] (* Michael De Vlieger, Apr 07 2018 *)

Formula

a(n) = A010873(A000043(n)). - Michel Marcus, Apr 07 2018

Extensions

a(45)-a(46) from Ivan Panchenko, Apr 07 2018
a(47) from Ivan Panchenko, Apr 09 2018
a(48) from Amiram Eldar, Oct 14 2024

A126058 Exponents p of the Mersenne primes 2^p - 1 (see A000043) read mod 18.

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 1, 13, 7, 17, 17, 1, 17, 13, 1, 7, 13, 13, 5, 13, 5, 5, 17, 11, 11, 7, 1, 5, 1, 1, 1, 11, 5, 1, 11, 11, 5, 5, 1, 1, 13, 5, 7, 11, 5, 1, 17, 5
Offset: 1

Views

Author

Artur Jasinski, Dec 17 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Array[Mod[MersennePrimeExponent@ #, 18] &, 45] (* Michael De Vlieger, Apr 10 2018 *)

Extensions

a(45)-a(47) from Ivan Panchenko, Apr 09 2018
a(48) from Amiram Eldar, Oct 15 2024

A233008 p mod 24, where p is such that 2^p - 1 is prime (see Mersenne primes, A000043).

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 19, 7, 13, 17, 11, 7, 17, 7, 7, 19, 1, 1, 5, 7, 17, 5, 5, 17, 5, 1, 1, 11, 7, 1, 19, 23, 17, 19, 5, 5, 17, 17, 13, 19, 7, 23, 1, 17, 11, 1, 17, 17
Offset: 1

Views

Author

Freimut Marschner, Dec 03 2013

Keywords

Crossrefs

Programs

  • Mathematica
    Mod[#, 24] &@ MersennePrimeExponent@ Range@ 45 (* Michael De Vlieger, Jul 22 2018 *)

Formula

a(n) = A000043(n) mod 24.

Extensions

a(46)-a(47) corrected and a(48) removed by Gord Palameta, Jul 21 2018
a(48) from Amiram Eldar, Oct 15 2024

A233009 Exponents p of the Mersenne primes 2^p - 1 (see A000043) read mod 23.

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 19, 8, 15, 20, 15, 12, 15, 9, 14, 18, 4, 20, 21, 7, 6, 5, 12, 19, 12, 2, 15, 16, 11, 6, 6, 1, 15, 9, 7, 21, 5, 5, 3, 1, 19, 21, 22, 6, 6, 7, 6, 3
Offset: 1

Views

Author

Freimut Marschner, Dec 03 2013

Keywords

Examples

			For n = 9, the 9th Mersenne prime index is A000043(9) = 61 and a(9) = 61 mod 23 = 15.
		

Crossrefs

Programs

  • Mathematica
    Array[ Mod[ MersennePrimeExponent@#, 23] &, 44] (* Robert G. Wilson v, Aug 06 2018 *)

Formula

a(n) = A000043(n) mod 23.

Extensions

a(46)-a(47) corrected and a(48) removed by Gord Palameta, Aug 06 2018
a(48) from Amiram Eldar, Oct 15 2024

A126045 Exponents p of the Mersenne primes 2^p - 1 (see A000043) read mod 5.

Original entry on oeis.org

2, 3, 0, 2, 3, 2, 4, 1, 1, 4, 2, 2, 1, 2, 4, 3, 1, 2, 3, 3, 4, 1, 3, 2, 1, 4, 2, 3, 3, 4, 1, 4, 3, 2, 4, 1, 2, 3, 2, 1, 3, 1, 2, 2, 2, 1, 4, 1
Offset: 1

Views

Author

Artur Jasinski, Dec 17 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Array[Mod[MersennePrimeExponent@ #, 5] &, 45] (* Michael De Vlieger, Apr 07 2018 *)

Formula

a(n) = A010874(A000043(n)). - Michel Marcus, Apr 07 2018

Extensions

a(45)-a(47) from Ivan Panchenko, Apr 08 2018
a(48) from Amiram Eldar, Oct 14 2024

A126046 Exponents p of the Mersenne primes 2^p - 1 (see A000043) read mod 6.

Original entry on oeis.org

2, 3, 5, 1, 1, 5, 1, 1, 1, 5, 5, 1, 5, 1, 1, 1, 1, 1, 5, 1, 5, 5, 5, 5, 5, 1, 1, 5, 1, 1, 1, 5, 5, 1, 5, 5, 5, 5, 1, 1, 1, 5, 1, 5, 5, 1, 5, 5
Offset: 1

Views

Author

Artur Jasinski, Dec 17 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Array[Mod[MersennePrimeExponent@ #, 6] &, 45] (* Michael De Vlieger, Apr 07 2018 *)

Formula

a(n) = A010875(A000043(n)). - Michel Marcus, Apr 07 2018

Extensions

a(45)-a(46) from Ivan Panchenko, Apr 07 2018
a(47) from Ivan Panchenko, Apr 09 2018
a(48) from Max Alekseyev, Sep 19 2023

A126047 Exponents p of the Mersenne primes 2^p - 1 (see A000043) read mod 7.

Original entry on oeis.org

2, 3, 5, 0, 6, 3, 5, 3, 5, 5, 2, 1, 3, 5, 5, 5, 6, 4, 4, 6, 1, 1, 6, 1, 1, 4, 5, 3, 1, 1, 1, 6, 1, 6, 5, 3, 2, 5, 2, 1, 4, 5, 1, 2, 2, 4, 1, 5
Offset: 1

Views

Author

Artur Jasinski, Dec 17 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Mod[MersennePrimeExponent[Range[48]], 7] (* Amiram Eldar, Oct 14 2024 *)

Formula

a(n) = A010876(A000043(n)). - Ivan Panchenko, Apr 07 2018

Extensions

a(45)-a(46) from Ivan Panchenko, Apr 07 2018
a(47) from Ivan Panchenko, Apr 09 2018
a(48) from Amiram Eldar, Oct 14 2024

A126048 Exponents p of the Mersenne primes 2^p - 1 (see A000043) read mod 8.

Original entry on oeis.org

2, 3, 5, 7, 5, 1, 3, 7, 5, 1, 3, 7, 1, 7, 7, 3, 1, 1, 5, 7, 1, 5, 5, 1, 5, 1, 1, 3, 7, 1, 3, 7, 1, 3, 5, 5, 1, 1, 5, 3, 7, 7, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Artur Jasinski, Dec 17 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Mod[MersennePrimeExponent[Range[47]],8] (* Harvey P. Dale, Apr 18 2019 *)

Formula

a(n) = A010877(A000043(n)). - Ivan Panchenko, Apr 07 2018

Extensions

a(45)-a(46) from Ivan Panchenko, Apr 07 2018
a(47) from Ivan Panchenko, Apr 09 2018
a(48) from Amiram Eldar, Oct 14 2024

A126049 Exponents p of the Mersenne primes 2^p - 1 (see A000043) read mod 9.

Original entry on oeis.org

2, 3, 5, 7, 4, 8, 1, 4, 7, 8, 8, 1, 8, 4, 1, 7, 4, 4, 5, 4, 5, 5, 8, 2, 2, 7, 1, 5, 1, 1, 1, 2, 5, 1, 2, 2, 5, 5, 1, 1, 4, 5, 7, 2, 5, 1, 8, 5
Offset: 1

Views

Author

Artur Jasinski, Dec 17 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Array[Mod[MersennePrimeExponent@ #, 9] &, 45] (* Michael De Vlieger, Apr 10 2018 *)

Formula

a(n) = A010878(A000043(n)). - Ivan Panchenko, Apr 07 2018

Extensions

a(45)-a(46) from Ivan Panchenko, Apr 07 2018
a(47) from Ivan Panchenko, Apr 09 2018
a(48) from Amiram Eldar, Oct 14 2024
Showing 1-10 of 18 results. Next