cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 284 results. Next

A058316 Apply inverse of "INVERT" transform to A007097, i.e.; the coefficients of the series 1/(1 + 2x + 3x^2 + 5x^3 + 11x^4 + 31x^5 + 127x^6 + 709x^7 ... ).

Original entry on oeis.org

1, -2, 1, -1, -2, -7, -51, -342, -3165, -34781, -465842, -7428379, -139065247, -3014260732, -74720908617, -2095541497991, -65859561109214, -2300344376478515
Offset: 0

Views

Author

Robert G. Wilson v, Dec 11 2000

Keywords

Programs

  • Mathematica
    CoefficientList[ Series[ 1/(1 + Sum[ NestList[ Prime, 1, n ] [ [ -1 ] ]*x^n, {n, 1, 17} ] ), {x, 0, 17} ], x ]

A131842 First differences of A007097.

Original entry on oeis.org

1, 1, 2, 6, 20, 96, 582, 4672, 47330, 595680, 9088942, 164702708, 3483060060, 84705352206, 2339732572312, 72635597193630, 2511496037777828, 95965484116697442, 4024669707807276532, 184149183428282681030, 9143767110701151656280
Offset: 0

Views

Author

Luis Longeri (longeri.nature(AT)gmail.com), Oct 04 2007

Keywords

References

  • L. Longeri, Towards understanding nature and the aesthetics of prime numbers, https://www.longeri.org/prime/nature.html [Broken link, but leave the URL here for historical reasons]

Extensions

a(17) and a(18) found by David Baugh using a program by Xavier Gourdon and Andrey V. Kulsha, Oct 25 2007
a(19) found by Andrey V. Kulsha using a program by Xavier Gourdon, Sep 29 2011
a(20) found by Andrey V. Kulsha using a program by Xavier Gourdon, Oct 02 2011

A292667 Decimal expansion of the series Sum_{k >= 1} 1/A007097(k).

Original entry on oeis.org

2, 1, 6, 5, 9, 9, 1, 4, 0, 3, 1, 7, 2, 2, 7, 8, 3, 0, 1, 9, 0, 8, 2, 5, 8, 3, 5, 2, 1, 1, 0, 1, 3, 0, 2, 8, 8, 5, 9, 5, 9, 8, 2, 3, 9, 7, 9, 0, 7, 1, 0, 9, 3, 0, 7, 5, 6, 5, 2, 7, 5, 2, 7, 6, 3, 6, 5, 0, 6, 7, 8, 2, 8, 6, 1, 8, 0, 7, 7, 4, 2, 1, 1, 0, 2, 7, 4, 1, 9, 7, 1, 4, 4, 8, 1, 6, 5, 6, 3, 8, 5, 9, 9, 0, 7, 5, 3, 4, 7
Offset: 1

Views

Author

Rajat Goel, Oct 14 2017

Keywords

Comments

Since the sum of 1/A006450(k) converges, this sum also converges.

Examples

			2.1659914031722783019082583521101...
		

Crossrefs

A067842 Expansion of 1/Product_{k=1..infinity} (1-x^A007097(k)).

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 18, 20, 22, 24, 26, 28, 30, 33, 36, 38, 42, 44, 48, 52, 55, 59, 63, 67, 72, 77, 81, 87, 92, 98, 104, 110, 116, 123, 130, 137, 145, 152, 161, 169, 178, 187, 196, 206, 216, 227, 237, 249, 260, 273, 285
Offset: 0

Views

Author

Robert G. Wilson v, Feb 11 2002

Keywords

Crossrefs

Cf. A007097.

Programs

  • Mathematica
    CoefficientList[ Series[1/Product[1 - x^Nest[Prime, 1, i], {i, 1, 6}], {x, 0, 75}], x]

Formula

G.f.: 1/((1-x^2)(1-x^3)(1-x^5)(1-x^11)...).

A124627 Riemann-Gram approximation to A007097(n+1) using A007097(n).

Original entry on oeis.org

2, 3, 5, 11, 33, 127, 715, 5345, 52692, 648344, 9737826, 174442666, 3657513487, 88362834417, 2428095525614, 75063691591379, 2586559741900744, 98552043877145945, 4123221751454999891, 188272405177875090033, 9332039515886416792536, 499720579610294249596689, 28785866289101759323472435, 1776891233143817540293248652
Offset: 1

Views

Author

Cino Hilliard, Dec 21 2006

Keywords

Comments

The largest presently [as of Dec 2006] known value of prime(10^n) is
prime(10^18) = 44211790234832169331 this compares to
primex(10^18) = 44211790234127235727 accurate to 11 places
Here the sign of prime(x)-primex(x) is positive. However, the sign changes as x varies. The following is a table with the relative error and sign change:
n prime(10^n) primex(10^n) rel. error
-- -------------------- -------------------- ------------
6 15485863 15484040 1.1772 E-4
7 179424673 179431239 -3.6594 E-4
8 2038074743 2038076587 -9.0478 E-5
9 22801763489 22801797576 -1.4949 E-5
10 252097800623 252097715777 3.3655 E-6
11 2760727302517 2760727752353 -1.6294 E-6
12 29996224275833 29996225393465 -3.7259 E-7
13 323780508946331 323780512411510 -1.0702 E-7
14 3475385758524527 3475385760290723 -5.0820 E-8
15 37124508045065437 37124508056355511 -3.0411 E-9
16 394906913903735329 394906913798224969 2.6718 E-9
17 4185296581467695669 4185296581676470048 -4.9883 E-11
18 44211790234832169331 44211790234127235727 1.5944 E-11

Examples

			A007097(17) = 75063692618249;
Primex(75063692618249) = 2586559741900744;
A007097(18) = 2586559730396077;
Primex(2586559730396077) = 98552043877145945;
A007097(19) ~ 98552043800000000.
		

Crossrefs

Cf. A007097.

Programs

  • Mathematica
    RiemannGram[x_] := Module[{n = 1, L, s = 1, r}, L = r = Log[x];
       While[s < 10^30 r, s = s + r/(Zeta[n + 1] n); n++; r = r L/n]; s];
    Primex[n_] :=  Module[{r1, r2, r, est},   If[n == 1, r = 2, r1 = n Log[n]; r2 = 2 r1;    For[i = 1, i < 50, i++, r = (r1 + r2)/2; est = RiemannGram[r]; If[est < n, r1 = r, r2 = r]]]; Round@r];
    Primex /@ NestList[Prime, 1, 15] (* Birkas Gyorgy, Apr 04 2011 *)
  • PARI
    xeqprimex(n) = {
    my(a,x); a = [1, 2, 3, 5, 11, 31, 127, 709, 5381, 52711, 648391, 9737333, 174440041, 3657500101, 88362852307, 2428095424619, 75063692618249, 2586559730396077];
    for(x=1,n, print1(round(primex(a[x]))",") ) }
    \\ Approximates the n-th prime number to an accuracy of log10(n)/2 places.
    primex(n) = {
    my(x,px,r1,r2,r,p10,b,e,est);
    if(n==1,return(2)); \\ force to 2
    b=10; \\ Select base
    p10=log(n)/log(10); \\ Determine p10 = power of 10 of n to adjust b^p10
    if(Rg(b^p10*log(b^(p10+1)))< b^p10,m=p10+1,m=p10);
    r1 = 0; r2 = 7.718281828; \\ Real kicker. if r2=1, it fails at 1e117
    for(x=1, 100,
       r=(r1+r2)/2;
       est = (b^p10*log(b^(m+r)));
       px = Rg(est);
       if(px <= b^p10,r1=r,r2=r); r=(r1+r2)/2; );
      est;
    }
    Rg(x) = \\ Gram's Riemann Approx of Pi(x)
    { my(n=1,L,s=1,r);
    L=r=log(x);
    while(s<10^40*r, s=s+r/zeta(n+1)/n; n=n+1; r=r*L/n);
    
  • s
    }

Formula

Primex(n) ~ prime(n). Prime(n) is the n-th prime number. Primex(n) is the Riemann-Gram approximation of Prime(n) accurate to log_10(n)/2 + 1 digits for large n. The sequence is primex(A007097(n)) for n = 1 to 18.

Extensions

a(19) and a(20) found by David Baugh using a program by Xavier Gourdon and Andrey V. Kulsha, Oct 25 2007
a(21), a(22) and a(23) calculated by David Baugh, Feb 10 2015
a(24) calculated by David Baugh, May 16 2016

A283460 Sum of the primes to the n-th primeth recurrence: A007097(n).

Original entry on oeis.org

0, 2, 5, 10, 28, 160, 1720, 41022, 1755214, 133749406, 16326765766, 3043575378184, 824056192305914, 310985745617574548, 158093565346546280550, 105246070758368902737088, 89604855320176022422345626, 95625469041357230765320405676, 125735670539766378990148368604358, 200685953917230887657316431262249112
Offset: 0

Views

Author

Robert G. Wilson v, Mar 08 2017

Keywords

Comments

Also employed Kim Walisch's primesum.

Examples

			a(0) = 0 since there are no primes up to 1 which is A007097(0);
a(1) = 2 since the first Primeth recurrence, A007097(1) is 2;
a(2) = 5 since the second Primeth recurrence, A007097(2) is 3, and 2+3 = 5;
a(3) = 10 since the third Primeth recurrence, A007097(3) is 5, and 2+3+5 = 10;
a(4) = 28 since the fourth Primeth recurrence, A007097(4) is 11, 2+3+5+7+11 = 28;
a(5) = 160 since the fifth Primeth recurrence, A007097(5) is 31, and 2+3+5+7+11+13+17+19+23+29+31 = 160; etc.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{lmt = Nest[ Prime@# &, 1, n], p = 2, s = 0}, While[p <= lmt, s += p; p = NextPrime@ p]; s]; Array[f, 14, 0]

Formula

a(n) = A007504(A007097(n)).

A321132 a(n) is the number of iterations of the mapping of x -> pi(x) until n reaches the main line as defined by A007097.

Original entry on oeis.org

0, 0, 0, 2, 0, 2, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 1

Views

Author

Robert G. Wilson v, Oct 27 2018

Keywords

Comments

All primes are either on the main line or will join it before reaching 0, as in A060197 or 1, as in A071578.
First occurrence of k, k=0,1,2,...: 1, 4, 7, 17, 59, 277, 1787, 15299, 167449, 2269733, etc.
A measure of Primeness - see the Fernandez link.

Examples

			a(10) is 3 because the tenth prime is 29 -> 10 -> 4 -> 2 and 2 is A007097(1).
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Length@ NestWhileList[PrimePi, n, ! MemberQ[{1, 2, 3, 5, 11, 31, 127, 709, 5381, 52711, 648391, 9737333, 174440041}, #] &] - 1; Array[f, 105]

Formula

a(n) = 0 iff n is a member of A007097.

A276625 Finitary numbers. Matula-Goebel numbers of rooted identity trees.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 11, 13, 15, 22, 26, 29, 30, 31, 33, 39, 41, 47, 55, 58, 62, 65, 66, 78, 79, 82, 87, 93, 94, 101, 109, 110, 113, 123, 127, 130, 137, 141, 143, 145, 155, 158, 165, 167, 174, 179, 186, 195, 202, 205, 211, 218, 226, 235, 237, 246, 254, 257, 271, 274, 282, 286, 290, 293, 303, 310, 313, 317, 319, 327, 330
Offset: 1

Views

Author

Gus Wiseman, Sep 29 2016

Keywords

Comments

For any positive integer n the following are equivalent:
(1) n is a finitary number.
(2) prime(n) is a finitary number.
(3) n is a product of distinct finitary prime numbers.
These conditions are necessary and sufficient to define an infinite set of positive integers but do not specify how this set should be enumerated or indexed (is there a more natural way? viz. A215366) so here they are listed in increasing order of the corresponding Matula-Goebel numbers. The following comment is from A007097.
The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T. - Emeric Deutsch, Feb 18 2012
Notes on use of the word "finitary": It is possible to have a finite set containing an infinite set. For example {{1,2,3...}} contains only one element. In contrast, a finitary set is a finite set whose elements are also required to be finitary sets. There are also no multisets allowed in finitary sets, although you can have repeated elements. For example {{{}},{{},{{}}}} is still considered a finitary set even though the multiset union {{},{},{{}}} is not a set. The finitary numbers of A276625 refer to multisets (trees) that don't involve any proper multisets (i.e. only sets). This is in addition to the (somewhat redundant) meaning of finitary sets as described in this comment on A004111 "There is a natural correspondence between rooted identity trees and finitary sets (sets whose transitive closure is finite); each node represents a set, with the children of that node representing the members of that set. When the set corresponding to an identity tree is written out using braces, there is one set of braces for each node of the tree; thus a(n) is also the number of sets that can be made using n pairs of braces. - Franklin T. Adams-Watters, Oct 25 2011" - Gus Wiseman, Oct 03 2016

Examples

			This sequence is proposed to be a canonical representation for rooted identity trees. The first thirty terms are the following.
1  ()           26 (()(()(())))     62  (()((((())))))
2  (())         29 ((()((()))))     65  (((()))(()(())))
3  ((()))       30 (()(())((())))   66  (()(())(((()))))
5  (((())))     31 (((((())))))     78  (()(())(()(())))
6  (()(()))     33 ((())(((()))))   79  ((()(((())))))
10 (()((())))   39 ((())(()(())))   82  (()((()(()))))
11 ((((()))))   41 (((()(()))))     87  ((())(()((()))))
13 ((()(())))   47 (((())((()))))   93  ((())((((())))))
15 ((())((()))) 55 (((()))(((())))) 94  (()((())((()))))
22 (()(((())))) 58 (()(()((()))))   101 ((()(()(()))))
We build the sequence as follows: The empty product is 1, so by (3) 1 is finitary. So is prime(1) = 2 by (2), so is prime(2) = 3 by (2), so is prime(3) = 5 by (2), so is 2*3 = 6 by (3), and so on. - _N. J. A. Sloane_, Oct 03 2016
		

Crossrefs

Cf. A000040 (prime numbers), A000720 (PrimePi).
Cf. A004111 (identity trees), A116540 (set multipartitions). Contained in A005117 (squarefree numbers). Contains A076146 (ordinal numbers), A007097 (rooted paths), A277098 (finitary primes).
Cf. A206497 (automorphism group sizes), A348066 (reduce to identity tree).

Programs

  • Mathematica
    primeMS[n_Integer?Positive]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    finitaryQ[n_Integer?Positive]:=finitaryQ[n]=Or[n===1,With[{m=primeMS[n]},{UnsameQ@@m,finitaryQ/@m}]/.List->And];
    fin[n_Integer?Positive]:=If[n===1,1,Block[{x=fin[n-1]+1},While[Not[finitaryQ[x]],x++];x]];
    Array[fin,200]

Formula

a(n) = primePi(A277098(n)).

A196050 Number of edges in the rooted tree with Matula-Goebel number n.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 4, 4, 5, 4, 5, 5, 5, 5, 5, 6, 5, 6, 5, 5, 6, 5, 5, 6, 5, 6, 6, 5, 5, 6, 6, 5, 6, 5, 6, 7, 6, 6, 6, 6, 7, 6, 6, 5, 7, 7, 6, 6, 6, 5, 7, 6, 6, 7, 6, 7, 7, 5, 6, 7, 7, 6, 7, 6, 6, 8, 6, 7, 7, 6, 7, 8, 6, 6, 7, 7, 6, 7, 7, 6, 8, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 6, 7, 7, 7, 8, 6, 6, 8, 6, 8
Offset: 1

Views

Author

Emeric Deutsch, Sep 27 2011

Keywords

Comments

The Matula-Goebel number of a rooted tree is defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
a(n) is, for n >= 2, the number of prime function prime(.) = A000040(.) operations in the complete reduction of n. See the W. Lang link with a list of the reductions for n = 2..100, where a curly bracket notation {.} is used for prime(.). - Wolfdieter Lang, Apr 03 2018
From Gus Wiseman, Mar 23 2019: (Start)
Every positive integer has a unique factorization (encoded by A324924) into factors q(i) = prime(i)/i, i > 0. For example:
11 = q(1) q(2) q(3) q(5)
50 = q(1)^3 q(2)^2 q(3)^2
360 = q(1)^6 q(2)^3 q(3)
In this factorization, a(n) is the number of factors counted with multiplicity. For example, a(11) = 4, a(50) = 7, a(360) = 10.
(End)
From Antti Karttunen, Oct 23 2023: (Start)
Totally additive with a(prime(n)) = 1 + a(n).
Number of iterations of A366385 (or equally, of A366387) needed to reach 1.
(End)

Examples

			a(7) = 3 because the rooted tree with Matula-Goebel number 7 is the rooted tree Y.
a(2^m) = m because the rooted tree with Matula-Goebel number 2^m is the star tree with m edges.
		

Crossrefs

Programs

  • Haskell
    import Data.List (genericIndex)
    a196050 n = genericIndex a196050_list (n - 1)
    a196050_list = 0 : g 2 where
       g x = y : g (x + 1) where
         y = if t > 0 then a196050 t + 1 else a196050 r + a196050 s
             where t = a049084 x; r = a020639 x; s = x `div` r
    -- Reinhard Zumkeller, Sep 03 2013
    
  • Maple
    with(numtheory): a := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 0 elif bigomega(n) = 1 then 1+a(pi(n)) else a(r(n))+a(s(n)) end if end proc: seq(a(n), n = 1 .. 110);
  • Mathematica
    a[1] = 0; a[n_?PrimeQ] := a[n] = 1 + a[PrimePi[n]]; a[n_] := Total[#[[2]] * a[#[[1]] ]& /@ FactorInteger[n]];
    Array[a, 110] (* Jean-François Alcover, Nov 16 2017 *)
    difac[n_]:=If[n==1,{},With[{i=PrimePi[FactorInteger[n][[1,1]]]},Sort[Prepend[difac[n*i/Prime[i]],i]]]];
    Table[Length[difac[n]],{n,100}] (* Gus Wiseman, Mar 23 2019 *)
  • PARI
    a(n) = my(f=factor(n)); [self()(primepi(p))+1 |p<-f[,1]]*f[,2]; \\ Kevin Ryde, May 28 2021
    
  • Python
    from functools import lru_cache
    from sympy import isprime, primepi, factorint
    @lru_cache(maxsize=None)
    def A196050(n):
        if n == 1 : return 0
        if isprime(n): return 1+A196050(primepi(n))
        return sum(e*A196050(p) for p, e in factorint(n).items()) # Chai Wah Wu, Mar 19 2022

Formula

a(1)=0; if n = prime(t) (the t-th prime), then a(n)=1 + a(t); if n = r*s (r,s>=2), then a(n)=a(r)+a(s). The Maple program is based on this recursive formula.
a(n) = A061775(n) - 1.
a(n) = A109129(n) + A366388(n) = A109082(n) + A358729(n). - Antti Karttunen, Oct 23 2023

A109129 Width (i.e., number of non-root vertices having degree 1) of the rooted tree with Matula-Goebel number n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 2, 3, 2, 2, 1, 3, 2, 3, 2, 4, 2, 3, 3, 3, 3, 2, 2, 4, 2, 3, 3, 4, 2, 3, 1, 5, 2, 3, 3, 4, 3, 4, 3, 4, 2, 4, 3, 3, 3, 3, 2, 5, 4, 3, 3, 4, 4, 4, 2, 5, 4, 3, 2, 4, 3, 2, 4, 6, 3, 3, 3, 4, 3, 4, 3, 5, 3, 4, 3, 5, 3, 4, 2, 5, 4, 3, 2, 5, 3, 4, 3, 4, 4, 4, 4, 4, 2, 3, 4, 6, 2, 5, 3, 4
Offset: 1

Views

Author

Keith Briggs, Aug 17 2005

Keywords

Comments

The Matula-Goebel number of a rooted tree is defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m >= 2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
A non-root vertex having degree 1 is called a leaf.
Every positive integer has a unique factorization (see A324924) into factors q(i) = prime(i)/i for i > 0. The number of ones in this factorization is a(n). For example, 30 = q(1)^3 q(2)^2 q(3), so a(30) = 3. - Gus Wiseman, Mar 23 2019

Examples

			a(7)=2 because the rooted tree with Matula-Goebel number 7 is the rooted tree Y.
a(2^m) = m because the rooted tree with Matula-Goebel number 2^m is a star with m edges.
		

Crossrefs

Programs

  • Haskell
    import Data.List (genericIndex)
    a109129 n = genericIndex a109129_list (n - 1)
    a109129_list = 0 : 1 : g 3 where
       g x = y : g (x + 1) where
         y = if t > 0 then a109129 t else a109129 r + a109129 s
             where t = a049084 x; r = a020639 x; s = x `div` r
    -- Reinhard Zumkeller, Sep 03 2013
    
  • Maple
    with(numtheory): a := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 0 elif n = 2 then 1 elif bigomega(n) = 1 then a(pi(n)) else a(r(n))+a(s(n)) end if end proc: seq(a(n), n = 1 .. 110);
  • Mathematica
    Nest[Function[{a, n}, Append[a, If[PrimeQ@ n, a[[PrimePi@ n]], Total@ Map[#2 a[[#1]] & @@ # &, FactorInteger[n]] ]]] @@ {#, Length@ # + 1} &, {0, 1}, 105] (* Michael De Vlieger, Mar 24 2019 *)
  • PARI
    ML(n) = if( n==1, 1, my(f=factor(n)); sum(k=1,matsize(f)[1],ML(primepi(f[k,1]))*f[k,2])) ;
    A109129(n) = if( n==1, 0, ML(n) ); \\ François Marques, Mar 16 2021
    
  • Python
    from functools import lru_cache
    from sympy import primepi, isprime, factorint
    @lru_cache(maxsize=None)
    def A109129(n):
        if n <= 2: return n-1
        if isprime(n): return A109129(primepi(n))
        return sum(e*A109129(p) for p, e in factorint(n).items()) # Chai Wah Wu, Mar 19 2022

Formula

a(1)=0; a(2)=1; if n = p(t) (= the t-th prime) and t >= 2, then a(n) = a(t); if n = rs (r, s >= 2), then a(n) = a(r) + a(s). The Maple program is based on this recursive formula.
The Gutman et al. references contain a different recursive formula.

Extensions

Typo in formula fixed by Reinhard Zumkeller, Sep 03 2013
Showing 1-10 of 284 results. Next