1, 1, 4, 4, 9, 9, 16, 25, 25, 36, 8, 6, 17, 28, 41, 39, 54, 2, 71, 11, 30, 47, 62, 87, 83, 3, 106, 22, 60, 91, 118, 112, 29, 21, 48, 77, 116, 149, 5, 176, 69, 59, 104, 94, 170, 31, 82, 70, 123, 166, 154, 7, 50, 95, 142, 128, 177, 242, 228, 57, 145, 216, 200, 273
Offset: 3
A283555
Even numbers that cannot be expressed as p+3, p+5, or p+7, with p prime.
Original entry on oeis.org
98, 122, 124, 126, 128, 148, 150, 190, 192, 208, 210, 212, 220, 222, 224, 250, 252, 292, 294, 302, 304, 306, 308, 326, 328, 330, 332, 346, 348, 368, 398, 410, 418, 420, 430, 432, 458, 476, 478, 480, 488, 500, 518, 520, 522, 532, 534, 536, 538, 540, 542, 556
Offset: 1
-
Select[2 Range[400], ! Or @@ PrimeQ[# - {3, 5, 7}] &] (* Giovanni Resta, Mar 10 2017 *)
A205728
Number of odd, nonsquare semiprimes <= n^2.
Original entry on oeis.org
0, 0, 0, 1, 2, 4, 5, 8, 11, 16, 19, 24, 28, 32, 41, 46, 50, 60, 66, 73, 81, 89, 100, 110, 118, 126, 140, 151, 163, 174, 187, 197, 210, 224, 239, 253, 269, 286, 298, 312, 326, 344, 363, 380, 399, 414, 435, 451, 468, 491, 513, 530, 546, 567, 591, 619, 643, 664
Offset: 1
-
SemiPrimeQ[n_Integer] := If[Abs[n] < 2, False, (2 == Plus @@ Transpose[FactorInteger[Abs[n]]][[2]])]; nn = 100; t = Select[Range[1, nn^2, 2], SemiPrimeQ[#] && ! IntegerQ[Sqrt[#]] &]; Table[Length[Select[t, # <= n^2 &]], {n, nn}] (* T. D. Noe, Jan 30 2012 *)
A205726
Number of semiprimes <= n^2.
Original entry on oeis.org
0, 1, 3, 6, 9, 13, 17, 22, 26, 34, 40, 48, 56, 62, 75, 82, 90, 103, 114, 126, 135, 149, 164, 179, 190, 202, 220, 236, 253, 270, 289, 304, 320, 340, 360, 381, 404, 425, 443, 462, 484, 508, 533, 556, 581, 604, 634, 655, 678, 709, 738, 761, 783, 813, 846, 881
Offset: 1
-
SemiPrimeQ[n_Integer] := If[Abs[n] < 2, False, (2 == Plus @@ Transpose[FactorInteger[Abs[n]]][[2]])]; nn = 100; t = Select[Range[nn^2], SemiPrimeQ]; Table[Length[Select[t, # <= n^2 &]], {n, nn}] (* T. D. Noe, Jan 30 2012 *)
Module[{nn=60,sp},sp=Accumulate[Table[If[PrimeOmega[n]==2,1,0],{n,nn^2}]];Table[sp[[i^2]],{i,nn}]] (* Harvey P. Dale, May 29 2014 *)
-
from sympy import prime, primepi
def A205726(n): return int(sum(primepi(n**2//prime(k))-k+1 for k in range(1,primepi(n)+1))) # Chai Wah Wu, Jul 23 2024
A205727
Number of odd semiprimes <= n^2.
Original entry on oeis.org
0, 0, 1, 2, 4, 6, 8, 11, 14, 19, 23, 28, 33, 37, 46, 51, 56, 66, 73, 80, 88, 96, 108, 118, 126, 134, 148, 159, 172, 183, 197, 207, 220, 234, 249, 263, 280, 297, 309, 323, 338, 356, 376, 393, 412, 427, 449, 465, 482, 505, 527, 544, 561, 582, 606, 634, 658
Offset: 1
-
SemiPrimeQ[n_Integer] := If[Abs[n] < 2, False, (2 == Plus @@ Transpose[FactorInteger[Abs[n]]][[2]])];nn = 100; t = Select[Range[1, nn^2, 2], SemiPrimeQ]; Table[Length[Select[t, # <= n^2 &]], {n, nn}] (* T. D. Noe, Jan 30 2012 *)
With[{osp=Table[{n,PrimeOmega[n]},{n,1,10001,2}]},Table[ Count[ Select[ osp,#[[1]]<=k^2&],?(#[[2]]==2&)],{k,60}]] (* _Harvey P. Dale, Dec 29 2017 *)
-
a(n) = sum(k=1, n^2, (k%2) && (bigomega(k) == 2)); \\ Michel Marcus, Feb 24 2018
A174840
Least k such that the primes 3 to prime(k+1) form a complete residue system (mod prime(n)).
Original entry on oeis.org
3, 7, 9, 13, 26, 26, 42, 32, 65, 63, 84, 74, 89, 162, 110, 126, 177, 169, 144, 171, 214, 196, 237, 238, 323, 297, 363, 344, 327, 515, 441, 543, 420, 481, 612, 494, 604, 543, 646, 552, 645, 644, 519, 742, 593, 737, 644, 851, 1012, 787, 1204, 727, 899, 800, 1046
Offset: 1
-
Table[p=Prime[n]; k=1; While[u=Union[Mod[Prime[Range[2,k]], p]]; u != Range[0,p-1], k++ ]; k-1, {n,2,100}] (* T. D. Noe, Apr 02 2010 *)
Corrected and extended by
T. D. Noe, Apr 02 2010
Comments