A218467 A variant of the Euclid-Mullin sequence A000945: a(1) = 2, a(n+1) is smallest prime factor congruent to 3 (mod 4) of Product_{k=1..n} a(k) + 1.
2, 3, 7, 43, 139, 50207, 23, 10651, 563, 11, 19, 363303615453958067659, 787, 2803, 3261639461817858097484047657974700766171, 448513341328399688966874038187266281752082128599801650127, 89724193529143
Offset: 1
Keywords
Examples
This sequence and A000945 are identical up to their fourth term. The fifth terms of both that sequence and this one are factors of 2*3*7*43+1=13*139. The smallest factor, used by A000945, is congruent to 1 (mod 4). Here we take the larger.
References
- P. G. L. Dirichlet: Vorlesungen uber Zahlentheorie. Braunschweig, Viewig, Supplement VI, (1871), 24 pages.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 13.
Links
- Daran Gill, Table of n, a(n) for n = 1..19
Programs
-
Mathematica
a={2}; q=1; For[n=2,n<=12,n++, q=q*Last[a]; AppendTo[a,Min[Select[FactorInteger[q+1][[All,1]],Mod[#,4]==3 &]]]; ]; a (* Robert Price, Jul 16 2015 *)
Comments