A268448
Numbers k such that (35*10^k - 11)/3 is prime.
Original entry on oeis.org
1, 2, 4, 5, 6, 7, 14, 21, 27, 34, 53, 72, 96, 145, 168, 191, 192, 309, 393, 502, 667, 1055, 1534, 1710, 4171, 4838, 4950, 9932, 10860, 11906, 14148, 17184, 27054, 31435
Offset: 1
7 is in this sequence because (35*10^7 - 11)/3 = 116666663 is prime.
-
[n: n in [0..400] |IsPrime((35*10^n-11) div 3)]; // Vincenzo Librandi, Feb 05 2016
-
Select[Range[0, 100000], PrimeQ[(35*10^# - 11)/3] &]
-
lista(nn) = {for(n=1, nn, if(ispseudoprime((35*10^n-11)/3), print1(n, ", ")));} \\ Altug Alkan, Feb 05 2016
A269303
Numbers k such that (266*10^k + 1)/3 is prime.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 8, 10, 13, 19, 26, 37, 69, 77, 81, 214, 242, 255, 900, 1113, 1833, 3166, 3566, 4753, 4849, 4869, 5005, 7372, 7702, 10240, 16100, 18972, 28574, 33815, 37820, 70457, 89482, 106066, 133603, 154897, 278325
Offset: 1
6 is in this sequence because (266*10^n+1)/3 = 88666667 is prime.
Initial terms and associated primes:
a(1) = 0, 89;
a(2) = 1, 887;
a(3) = 2, 8867;
a(4) = 3, 88667;
a(5) = 4, 886667;
a(6) = 5, 8866667;
a(7) = 6, 88666667;
a(8) = 8, 8866666667;
a(9) = 10, 886666666667;
a(10) = 13, 886666666666667, etc.
-
[n: n in [0..220] | IsPrime((266*10^n + 1) div 3)]; // Vincenzo Librandi, Feb 23 2016
-
Select[Range[0, 100000], PrimeQ[(266*10^#+1)/3] &]
-
is(n)=ispseudoprime((266*10^n + 1)/3) \\ Charles R Greathouse IV, Feb 16 2017
A270339
Numbers k such that (11*10^k + 19)/3 is prime.
Original entry on oeis.org
1, 2, 3, 9, 17, 18, 20, 24, 29, 36, 48, 114, 126, 135, 153, 170, 241, 363, 483, 579, 681, 948, 2483, 2798, 3081, 5137, 5640, 6890, 7080, 12600, 16929, 24253, 24793, 35546, 52956, 69645, 133831, 206688
Offset: 1
3 is in this sequence because (11*10^3 + 19)/3 = 3673 is prime.
Initial terms and associated primes:
a(1) = 1, 43;
a(2) = 2, 373;
a(3) = 3, 3673;
a(4) = 9, 3666666673;
a(5) = 17, 366666666666666673, etc.
-
Select[Range[0, 100000], PrimeQ[(11*10^# + 19)/3] &]
-
is(n)=isprime((11*10^n + 19)/3) \\ Charles R Greathouse IV, Mar 16 2016
A270613
Numbers k such that (68*10^k + 7)/3 is prime.
Original entry on oeis.org
1, 2, 3, 4, 7, 10, 24, 25, 29, 34, 35, 37, 46, 49, 88, 103, 290, 381, 484, 696, 751, 886, 999, 1750, 5062, 6214, 9740, 12558, 16551, 24674, 28600, 37427, 48032, 61991, 70148, 72516, 99441, 179656
Offset: 1
3 is in this sequence because (68*10^3+7)/3 = 22669 is prime.
Initial terms and associated primes:
a(1) = 1, 229;
a(2) = 2, 2269;
a(3) = 3, 22669;
a(4) = 4, 226669;
a(5) = 7, 226666669, etc.
-
Select[Range[0, 100000], PrimeQ[(68*10^# + 7)/3] &]
-
lista(nn) = for(n=1, nn, if(ispseudoprime((68*10^n + 7)/3), print1(n, ", "))); \\ Altug Alkan, Mar 20 2016
A270831
Numbers k such that (7*10^k + 71)/3 is prime.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 23, 29, 37, 39, 40, 89, 115, 189, 227, 253, 301, 449, 533, 607, 969, 1036, 1207, 1407, 1701, 3493, 7147, 11342, 21638, 22327, 25575, 25648, 34079, 39974, 47719, 49913, 74729, 100737, 103531, 168067
Offset: 1
3 is in this sequence because (7*10^3 + 71)/3 = 2357 is prime.
Initial terms and associated primes:
a(1) = 1, 47;
a(2) = 2, 257;
a(3) = 3, 2357;
a(4) = 4, 23357;
a(5) = 5, 233357, etc.
-
Select[Range[0, 100000], PrimeQ[(7*10^# + 71)/3] &]
-
lista(nn) = {for(n=1, nn, if(ispseudoprime((7*10^n + 71)/3), print1(n, ", "))); } \\ Altug Alkan, Mar 23 2016
A270890
Numbers k such that (8*10^k + 49)/3 is prime.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 10, 24, 33, 34, 35, 45, 52, 56, 62, 65, 103, 166, 424, 886, 1418, 1825, 4895, 5715, 7011, 7810, 9097, 12773, 14746, 20085, 25359, 27967, 46629, 48507, 68722, 74944, 102541, 118960, 157368
Offset: 1
3 is in this sequence because (8*10^3 + 49)/3 = 2683 is prime.
Initial terms and associated primes:
a(1) = 0, 19;
a(2) = 1, 43;
a(3) = 2, 283;
a(4) = 3, 2683;
a(5) = 4, 26683;
a(6) = 5, 266683, etc.
-
Select[Range[0, 100000], PrimeQ[(8*10^# + 49)/3] &]
-
is(n)=isprime((8*10^n + 49)/3) \\ Charles R Greathouse IV, Feb 16 2017
A270929
Numbers k such that (16*10^k - 31)/3 is prime.
Original entry on oeis.org
1, 2, 3, 4, 15, 20, 24, 32, 38, 40, 63, 93, 104, 194, 208, 514, 535, 600, 928, 1300, 1485, 1780, 2058, 3060, 3356, 3721, 6662, 11552, 15482, 23000, 27375, 34748, 57219, 61251, 85221, 99656, 103214, 103244, 276537
Offset: 1
3 is in this sequence because (16*10^3 - 31)/3 = 5323 is prime.
Initial terms and associated primes:
a(1) = 1, 43;
a(2) = 2, 523;
a(3) = 3, 5323;
a(4) = 4, 53323;
a(5) = 15, 5333333333333323;
a(6) = 20, 533333333333333333323, etc.
-
Select[Range[0, 100000], PrimeQ[(16*10^# - 31)/3] &]
-
isok(n) = ispseudoprime((16*10^n - 31)/3); \\ Michel Marcus, Mar 26 2016
A271269
Numbers k such that 8*10^k - 49 is prime.
Original entry on oeis.org
1, 2, 3, 8, 24, 49, 57, 74, 104, 131, 144, 162, 182, 246, 302, 352, 557, 581, 589, 704, 939, 1181, 1937, 2157, 4463, 6013, 7266, 8504, 8691, 16129, 20108, 40677, 74234, 112018
Offset: 1
3 is in this sequence because 8*10^3 - 49 = 7951 is prime.
Initial terms and associated primes:
a(1) = 1, 31;
a(2) = 2, 751;
a(3) = 3, 7951;
a(4) = 8, 799999951;
a(6) = 24, 7999999999999999999999951, etc.
A097683
Numbers k such that R_k + 2 is prime, where R_k = 11...1 is the repunit (A002275) of length k.
Original entry on oeis.org
0, 1, 2, 3, 5, 9, 11, 24, 84, 221, 1314, 2952, 20016, 51054
Offset: 1
Carl R. White and Julien Peter Benney (jpbenney(AT)ftml.net), Aug 19 2004
11113 = ((10^5)+17)/9 and 11113 is prime.
A093011
Primes of the form 10*R_k + 3, where R_k is the repunit (A002275) of length k.
Original entry on oeis.org
3, 13, 113, 11113, 111111113, 11111111113, 111111111111111111111113, 111111111111111111111111111111111111111111111111111111111111111111111111111111111113
Offset: 1
-
[a: n in [1..100] | IsPrime(a) where a is ((10^n-1) div 9)+2 ]; // Vincenzo Librandi, Dec 13 2011
-
Select[Table[(((10^n-1)/ 9)+2),{n,1,900}],PrimeQ] (* Vincenzo Librandi, Dec 13 2011 *)
Showing 1-10 of 507 results.
Comments