A269303
Numbers k such that (266*10^k + 1)/3 is prime.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 8, 10, 13, 19, 26, 37, 69, 77, 81, 214, 242, 255, 900, 1113, 1833, 3166, 3566, 4753, 4849, 4869, 5005, 7372, 7702, 10240, 16100, 18972, 28574, 33815, 37820, 70457, 89482, 106066, 133603, 154897, 278325
Offset: 1
6 is in this sequence because (266*10^n+1)/3 = 88666667 is prime.
Initial terms and associated primes:
a(1) = 0, 89;
a(2) = 1, 887;
a(3) = 2, 8867;
a(4) = 3, 88667;
a(5) = 4, 886667;
a(6) = 5, 8866667;
a(7) = 6, 88666667;
a(8) = 8, 8866666667;
a(9) = 10, 886666666667;
a(10) = 13, 886666666666667, etc.
-
[n: n in [0..220] | IsPrime((266*10^n + 1) div 3)]; // Vincenzo Librandi, Feb 23 2016
-
Select[Range[0, 100000], PrimeQ[(266*10^#+1)/3] &]
-
is(n)=ispseudoprime((266*10^n + 1)/3) \\ Charles R Greathouse IV, Feb 16 2017
A270339
Numbers k such that (11*10^k + 19)/3 is prime.
Original entry on oeis.org
1, 2, 3, 9, 17, 18, 20, 24, 29, 36, 48, 114, 126, 135, 153, 170, 241, 363, 483, 579, 681, 948, 2483, 2798, 3081, 5137, 5640, 6890, 7080, 12600, 16929, 24253, 24793, 35546, 52956, 69645, 133831, 206688
Offset: 1
3 is in this sequence because (11*10^3 + 19)/3 = 3673 is prime.
Initial terms and associated primes:
a(1) = 1, 43;
a(2) = 2, 373;
a(3) = 3, 3673;
a(4) = 9, 3666666673;
a(5) = 17, 366666666666666673, etc.
-
Select[Range[0, 100000], PrimeQ[(11*10^# + 19)/3] &]
-
is(n)=isprime((11*10^n + 19)/3) \\ Charles R Greathouse IV, Mar 16 2016
A270613
Numbers k such that (68*10^k + 7)/3 is prime.
Original entry on oeis.org
1, 2, 3, 4, 7, 10, 24, 25, 29, 34, 35, 37, 46, 49, 88, 103, 290, 381, 484, 696, 751, 886, 999, 1750, 5062, 6214, 9740, 12558, 16551, 24674, 28600, 37427, 48032, 61991, 70148, 72516, 99441, 179656
Offset: 1
3 is in this sequence because (68*10^3+7)/3 = 22669 is prime.
Initial terms and associated primes:
a(1) = 1, 229;
a(2) = 2, 2269;
a(3) = 3, 22669;
a(4) = 4, 226669;
a(5) = 7, 226666669, etc.
-
Select[Range[0, 100000], PrimeQ[(68*10^# + 7)/3] &]
-
lista(nn) = for(n=1, nn, if(ispseudoprime((68*10^n + 7)/3), print1(n, ", "))); \\ Altug Alkan, Mar 20 2016
A270831
Numbers k such that (7*10^k + 71)/3 is prime.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 23, 29, 37, 39, 40, 89, 115, 189, 227, 253, 301, 449, 533, 607, 969, 1036, 1207, 1407, 1701, 3493, 7147, 11342, 21638, 22327, 25575, 25648, 34079, 39974, 47719, 49913, 74729, 100737, 103531, 168067
Offset: 1
3 is in this sequence because (7*10^3 + 71)/3 = 2357 is prime.
Initial terms and associated primes:
a(1) = 1, 47;
a(2) = 2, 257;
a(3) = 3, 2357;
a(4) = 4, 23357;
a(5) = 5, 233357, etc.
-
Select[Range[0, 100000], PrimeQ[(7*10^# + 71)/3] &]
-
lista(nn) = {for(n=1, nn, if(ispseudoprime((7*10^n + 71)/3), print1(n, ", "))); } \\ Altug Alkan, Mar 23 2016
A270890
Numbers k such that (8*10^k + 49)/3 is prime.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 10, 24, 33, 34, 35, 45, 52, 56, 62, 65, 103, 166, 424, 886, 1418, 1825, 4895, 5715, 7011, 7810, 9097, 12773, 14746, 20085, 25359, 27967, 46629, 48507, 68722, 74944, 102541, 118960, 157368
Offset: 1
3 is in this sequence because (8*10^3 + 49)/3 = 2683 is prime.
Initial terms and associated primes:
a(1) = 0, 19;
a(2) = 1, 43;
a(3) = 2, 283;
a(4) = 3, 2683;
a(5) = 4, 26683;
a(6) = 5, 266683, etc.
-
Select[Range[0, 100000], PrimeQ[(8*10^# + 49)/3] &]
-
is(n)=isprime((8*10^n + 49)/3) \\ Charles R Greathouse IV, Feb 16 2017
A270929
Numbers k such that (16*10^k - 31)/3 is prime.
Original entry on oeis.org
1, 2, 3, 4, 15, 20, 24, 32, 38, 40, 63, 93, 104, 194, 208, 514, 535, 600, 928, 1300, 1485, 1780, 2058, 3060, 3356, 3721, 6662, 11552, 15482, 23000, 27375, 34748, 57219, 61251, 85221, 99656, 103214, 103244, 276537
Offset: 1
3 is in this sequence because (16*10^3 - 31)/3 = 5323 is prime.
Initial terms and associated primes:
a(1) = 1, 43;
a(2) = 2, 523;
a(3) = 3, 5323;
a(4) = 4, 53323;
a(5) = 15, 5333333333333323;
a(6) = 20, 533333333333333333323, etc.
-
Select[Range[0, 100000], PrimeQ[(16*10^# - 31)/3] &]
-
isok(n) = ispseudoprime((16*10^n - 31)/3); \\ Michel Marcus, Mar 26 2016
A271269
Numbers k such that 8*10^k - 49 is prime.
Original entry on oeis.org
1, 2, 3, 8, 24, 49, 57, 74, 104, 131, 144, 162, 182, 246, 302, 352, 557, 581, 589, 704, 939, 1181, 1937, 2157, 4463, 6013, 7266, 8504, 8691, 16129, 20108, 40677, 74234, 112018
Offset: 1
3 is in this sequence because 8*10^3 - 49 = 7951 is prime.
Initial terms and associated primes:
a(1) = 1, 31;
a(2) = 2, 751;
a(3) = 3, 7951;
a(4) = 8, 799999951;
a(6) = 24, 7999999999999999999999951, etc.
A270974
Numbers k such that 7*10^k + 57 is prime.
Original entry on oeis.org
1, 2, 3, 5, 6, 7, 12, 14, 19, 21, 27, 33, 60, 61, 91, 102, 535, 549, 614, 695, 709, 1014, 2448, 2519, 3464, 3511, 6348, 6841, 11009, 11177, 20754, 26610, 30651, 39246, 122294
Offset: 1
3 is in this sequence because 7*10^3+57 = 7057 is prime.
Initial terms and associated primes:
a(1) = 1, 127;
a(2) = 2, 757;
a(3) = 3, 7057;
a(4) = 5, 700057;
a(5) = 6, 7000057;
a(6) = 7, 70000057, etc.
-
[n: n in [1..500] | IsPrime(7*10^n + 57)]; // Vincenzo Librandi, Jul 03 2016
-
Select[Range[0, 100000], PrimeQ[7*10^# + 57] &]
-
lista(nn) = {for(n=1, nn, if(ispseudoprime(7*10^n + 57), print1(n, ", ")));} \\ Altug Alkan, Mar 27 2016
A254441
Numbers k such that (41*10^k + 49)/9 is prime.
Original entry on oeis.org
2, 3, 6, 20, 26, 38, 51, 119, 155, 218, 446, 486, 1211, 1319, 1338, 1365, 1575, 5106, 7019, 9503, 9695, 14304, 15417, 17765, 24222, 25500, 26306, 35238, 93207
Offset: 1
3 is in this sequence because (41*10^3 + 49)/9 = 4561 is prime.
Initial terms and associated primes:
a(1) = 2, 461;
a(2) = 3, 4561;
a(3) = 6, 4555561;
a(4) = 20, 455555555555555555561;
a(5) = 26, 455555555555555555555555561, etc.
-
Select[Range[0, 100000], PrimeQ[(41*10^# + 49)/9] &]
-
is(n)=ispseudoprime((41*10^n + 49)/9) \\ Charles R Greathouse IV, Jun 13 2017
A271109
Numbers k such that (5 * 10^k - 119)/3 is prime.
Original entry on oeis.org
2, 3, 5, 6, 8, 11, 26, 33, 35, 41, 69, 73, 204, 230, 295, 381, 392, 537, 776, 1187, 2187, 2426, 4182, 4589, 5841, 6107, 11513, 13431, 28901, 56256, 65203, 66613, 82085, 91707, 126871, 140281
Offset: 1
3 is in this sequence because (5*10^3 - 119)/3 = 1627 is prime.
Initial terms and associated primes:
a(1) = 2, 127;
a(2) = 3, 1627;
a(3) = 5, 166627;
a(4) = 6, 1666627;
a(5) = 8, 166666627, etc.
-
Select[Range[10^5], PrimeQ[(5 * 10^# - 119)/3] &]
-
is(n)=ispseudoprime((5*10^n-119)/3) \\ Charles R Greathouse IV, Jun 13 2017
Showing 1-10 of 505 results.
Comments