cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Lubomir Alexandrov

Lubomir Alexandrov's wiki page.

Lubomir Alexandrov has authored 5 sequences.

A065505 Let p(k) denote k-th prime; consider solutions (p(n),p(m)) of Diophantine equation p(p(n)+1)-6.p(p(m))=1 (*), where p(p(n)) belongs to A060213 and p(p(m))=(p(p(n))+1)/6; sequence gives values of p(n).

Original entry on oeis.org

7, 2309, 2753, 2789, 26183, 46933, 53597, 58411, 61357, 69481, 87691, 111487, 124991, 134327, 140659, 144651, 147551, 236519, 247711, 164643, 270223, 291359
Offset: 0

Author

Lubomir Alexandrov, Nov 25 2001

Keywords

Examples

			p(n)=395581 and p(m)=75277 satisfy equation (*) at the primes p(p(n))=5730617 and p(p(m))=955103.
		

Crossrefs

A065511 Let p(k) denote k-th prime; consider solutions (n,m) of the Diophantine system {p(p(n)+1)-p(p(n))=2, p(p(n))-6.p(p(m))=-1} (*); sequence gives values of m.

Original entry on oeis.org

1, 92, 105, 106, 689, 1138, 1280, 1373, 1432, 1600, 1960, 2416, 2683, 2846, 2968, 3042, 3091, 4694, 4884, 5191, 5284, 5642, 6905, 6949, 7074, 7095, 7213, 7274, 7418
Offset: 0

Author

Lubomir Alexandrov, Nov 26 2001

Keywords

Comments

( p(p(n)), p(p(n)+1) ) is twin prime pair with average 6.p(p(m)) (A060213).

Examples

			n = 402 and m = 105 satisfy system (*) at the primes p(p(n)) = 24917 and p(p(m)) = 4153; n = 33521 and m = 7418 satisfy system (*) at the primes p(p(n)) = 5730617 and p(p(m)) = 955103.
		

Crossrefs

A063502 a(n+1) = p, where p is the a(n)-th twin prime (p,p+2), with a(0) = 1.

Original entry on oeis.org

1, 3, 11, 137, 5639, 641129, 152921807, 65818751039, 46091763604421
Offset: 0

Author

Lubomir Alexandrov, Jul 30 2001

Keywords

Comments

Instead of starting with a(0) = 1 for the first twin prime (3,5) other sequences can be formed for a(0) = 2, i.e. 2nd twin prime: 2, 5, 29, 641, 44381, 7212059, etc., a(0) = 4: 4, 17, 239, 12161, 1583927, etc., a(0) = 6: 6, 41, 1151, 93251, 16989317, etc., a(0) = 7: 7, 59 1931,176021, 35263691, etc., a(0) = 8: 8, 71, 2339,221201, 45749309 and so on.

Examples

			a(3) = 137 because a(2) = 11 and the 11th twin prime is (137,139).
		

Crossrefs

Cf. A007097.

Programs

  • Mathematica
    (* Computes up to a(6) only *) tp[n_] := (* = A001359 *) tp[n] = (p = NextPrime[tp[n-1]]; While[ !PrimeQ[p+2], p = NextPrime[p]]; p); tp[1] = 3; Do[tp[n], {n, 2, 10^6}]; a[n_] := a[n] = tp[a[n-1]]; a[0]=1; Table[ Print[ a[n]]; a[n], {n, 0, 6}] (* Jean-François Alcover, Dec 13 2011 *)

Formula

a(n+1) = A001359(a(n)); a(0)=1. [M. F. Hasler, Mar 02 2009]

Extensions

Edited by Frank Ellermann, Jan 25 2002
Offset and example corrected by Farideh Firoozbakht, Dec 07 2008
a(7) = 65818751039 from Zak Seidov and Farideh Firoozbakht, Dec 13 2008
Computed a(8)=46091763604421 using data from T. Oliveira e Silva. - M. F. Hasler, Mar 02 2009

A064110 Let s(n) = n-th single prime (cf. A007510). Sequence is defined by recurrence a(n+1) = s(a(n)), n = 0,1,2,..., a(0)=1.

Original entry on oeis.org

1, 2, 23, 263, 2917, 38639, 603311, 11093633, 236524303, 5782539281
Offset: 0

Author

Lubomir Alexandrov, Sep 07 2001

Keywords

Comments

This is the "isolated prime Eratosthenes progression at base 1 (ipep(1))". The next ipep are: ipep(3) = 3, 37, 397, 4751, 64403, 1038629, 19661749,...; ipep(4) = 4, 47, 491, 5897, 81131, 1328167, 25467419,...; ipep(5) = 5, 53, 557, 6709, 93287, 1541191, 29778547,...; ...; ipep(22)= 22, 257, 2861, 37799, 589181, 10821757, 230452837,... ipep(24)= 24, 277, 3079, 40823, 640121, 11807167, 252480587,... and so on.
In the terminology of A007097 the name is "isolated_prime-th recurrence ..."

References

  • "Isolated Primes", by Richard L. Francis, J. Rec. Math., 11 (1978), 17-22.

Crossrefs

Extensions

a(9) from Sean A. Irvine, Jun 12 2023

A065503 Indices k of primes p(k) such that p(k) is in A060213.

Original entry on oeis.org

5, 7, 10, 13, 26, 33, 60, 113, 116, 142, 265, 288, 313, 332, 353, 384, 408, 484, 498, 542, 625, 636, 719, 805, 864, 1064, 1070, 1194, 1328, 1456, 1477, 1528, 1538, 1571, 1623, 1627, 1651, 1660, 1867, 2003, 2216, 2244, 2309, 2311, 2418, 2438, 2469, 2616, 2753
Offset: 1

Author

Lubomir Alexandrov, Nov 25 2001

Keywords

Comments

Original name: Let p(k) denote k-th prime; consider solutions (x,y) of Diophantine equation p(x+1)-6p(y)=1 (*), where p(x) belongs to A060213 and p(m)=(p(n)+1)/6; sequence gives values of x.

Examples

			x=13084 and y=2612 satisfy equation (*) at the primes p(x)=140837 and p(y)=23473.
		

Crossrefs

Extensions

Offset corrected, more terms, and title clarified by Sean A. Irvine, Sep 03 2023