cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 168 results. Next

A003277 Cyclic numbers: k such that k and phi(k) are relatively prime; also k such that there is just one group of order k, i.e., A000001(k) = 1.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 33, 35, 37, 41, 43, 47, 51, 53, 59, 61, 65, 67, 69, 71, 73, 77, 79, 83, 85, 87, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 119, 123, 127, 131, 133, 137, 139, 141, 143, 145, 149, 151, 157, 159, 161, 163, 167, 173
Offset: 1

Views

Author

Keywords

Comments

Except for a(2)=2, all the terms in the sequence are odd. This is because of the existence of a non-cyclic dihedral group of order 2n for each n>1. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 09 2001
Also gcd(n, A051953(n)) = 1. - Labos Elemer
n such that x^n == 1 (mod n) has no solution 2 <= x <= n. - Benoit Cloitre, May 10 2002
There is only one group (the cyclic group of order n) whose order is n. - Gerard P. Michon, Jan 08 2008 [This is a 1947 result of Tibor Szele. - Charles R Greathouse IV, Nov 23 2011]
Any divisor of a Carmichael number (A002997) must be odd and cyclic. Conversely, G. P. Michon conjectured (c. 1980) that any odd cyclic number has at least one Carmichael multiple (if the conjecture is true, each of them has infinitely many such multiples). In 2007, Michon & Crump produced explicit Carmichael multiples of all odd cyclic numbers below 10000 (see link, cf. A253595). - Gerard P. Michon, Jan 08 2008
Numbers n such that phi(n)^phi(n) == 1 (mod n). - Michel Lagneau, Nov 18 2012
Contains A000040, and all members of A006094 except 6. - Robert Israel, Jul 08 2015
Number m such that n^n == r (mod m) is solvable for any r. - David W. Wilson, Oct 01 2015
Numbers m such that A074792(m) = m + 1. - Thomas Ordowski, Jul 16 2017
Squarefree terms of A056867 (see McCarthy link p. 592 and similar comment with "cubefree" in A051532). - Bernard Schott, Mar 24 2022

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • J. S. Rose, A Course on Group Theory, Camb. Univ. Press, 1978, see p. 7.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequence of A051532. Intersection of A056867 and A005117.
Cf. A000010, A008966, A009195, A050384 (the same sequence but with the primes removed). Also A000001(a(n)) = 1.

Programs

  • Haskell
    import Data.List (elemIndices)
    a003277 n = a003277_list !! (n-1)
    a003277_list = map (+ 1) $ elemIndices 1 a009195_list
    -- Reinhard Zumkeller, Feb 27 2012
    
  • Magma
    [n: n in [1..200] | Gcd(n, EulerPhi(n)) eq 1]; // Vincenzo Librandi, Jul 09 2015
    
  • Maple
    select(t -> igcd(t, numtheory:-phi(t))=1, [$1..1000]); # Robert Israel, Jul 08 2015
  • Mathematica
    Select[Range[175], GCD[#, EulerPhi[#]] == 1 &] (* Jean-François Alcover, Apr 04 2011 *)
    Select[Range@175, FiniteGroupCount@# == 1 &] (* Robert G. Wilson v, Feb 16 2017 *)
    Select[Range[200],CoprimeQ[#,EulerPhi[#]]&] (* Harvey P. Dale, Apr 10 2022 *)
  • PARI
    isA003277(n) = gcd(n,eulerphi(n))==1 \\ Michael B. Porter, Feb 21 2010
    
  • Sage
    # Compare A050384.
    def isPrimeTo(n, m): return gcd(n, m) == 1
    def isCyclic(n): return isPrimeTo(n, euler_phi(n))
    [n for n in (1..173) if isCyclic(n)] # Peter Luschny, Nov 14 2018

Formula

n = p_1*p_2*...*p_k (for some k >= 0), where the p_i are distinct primes and no p_j-1 is divisible by any p_i.
A000001(a(n)) = 1.
Erdős proved that a(n) ~ e^gamma n log log log n, where e^gamma is A073004. - Charles R Greathouse IV, Nov 23 2011
A000005(a(n)) = 2^k. - Carlos Eduardo Olivieri, Jul 07 2015
A008966(a(n)) = 1. - Bernard Schott, Mar 24 2022

Extensions

More terms from Christian G. Bower

A072410 Number of iterations of the map k -> A000001(k) needed to reach 1 starting at n, or -1 if no such number exists.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 3, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 3, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 3, 2, 1, 3, 1, 2, 1, 3, 1, 3, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 2, 1, 2, 1, 3, 1, 3, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2
Offset: 1

Views

Author

N. J. A. Sloane, Oct 03 2008

Keywords

Comments

The old entry with this sequence number was a duplicate of A052409.
It appears that a(n) is the number of times n appears in A142978, excluding the first column of infinitely many 1's. - Ron Wolf, Dec 16 2020
Preceding comment is incorrect. The first counterexample is a(19) = 1, whereas 19 appears twice in A142978. - Eric M. Schmidt, Mar 22 2021

Examples

			Conway et al. remark that every number less than 2048 reaches 1 after at most 5 steps and give the following examples:
672 -> 1280 -> 1116461 -> 1
1024 -> 49487367289 -> 1
720 -> 840 -> 186 -> 6 -> 2 -> 1
320 -> 1640 -> 68 -> 5 -> 1
384 -> 20169 -> 67 -> 1
128 -> 2328 -> 64 -> 267 -> 1
960 -> 11394 -> 60 -> 13 -> 1
864 -> 4725 -> 51 -> 1
1344 -> 11720 -> 49 -> 2 -> 1
1440 -> 5958 -> 16 -> 14 -> 2 -> 1
1248 -> 1460 -> 15 -> 1
256 -> 56092 -> 11 -> 1
1728 -> 47937 -> 6 -> 2 -> 1
512 -> 10494213 -> 5 -> 1
1536 -> 408641062 -> 4 -> 2 -> 1
1664 -> 21507 -> 2 -> 1
1280 -> 1116461 -> 1
		

Crossrefs

Cf. A000001, A066952 (indices of records).

A090052 Group-abundant numbers: n such that the number of groups of order n (A000001) exceeds n.

Original entry on oeis.org

32, 48, 64, 96, 128, 144, 160, 192, 256, 288, 320, 384, 432, 448, 480, 512, 576, 640, 648, 672, 704, 720, 768, 800, 832, 864, 896, 960, 1024, 1088, 1152, 1216, 1248, 1280, 1296, 1344, 1408, 1440, 1458, 1536, 1600, 1664, 1728, 1792, 1920, 1944, 2016, 2048, 2112, 2160, 2176, 2187, 2240, 2304, 2400, 2432, 2496, 2560, 2592, 2688, 2816, 2880, 2916, 2944
Offset: 1

Views

Author

J. H. Conway, Jan 21 2004

Keywords

Comments

It seems fairly certain that 1 is the only group-perfect number and that almost all numbers are group-deficient. However, all that is known at present is that all squarefree numbers except 1 are group-deficient.

Examples

			32 is in the sequence because A000001(32) = 51 > 32, 48 is in the sequence because A000001(48) = 52 > 48 and since the exact number of groups of order 2048 that have exponent-2 class 2 is 1774274116992170 then 2048 is in the sequence because A000001(2048) > 1774274116992170 > 2048. - _Muniru A Asiru_, Nov 26 2017
		

Crossrefs

Cf. A000001.

Programs

Extensions

1944, 2016, and 2048 added by Eric M. Schmidt, Aug 02 2012
a(49)-a(52) from Muniru A Asiru, Nov 26 2017
a(53)-a(178) from Alex Meiburg, Dec 30 2017, partially using https://github.com/olexandr-konovalov/gnu/

A185291 Dirichlet convolution of A000001 with itself.

Original entry on oeis.org

1, 2, 2, 5, 2, 6, 2, 14, 5, 6, 2, 18, 2, 6, 4, 42, 2, 18, 2, 18, 6, 6, 2, 58, 5, 6, 14, 16, 2, 18, 2, 150, 4, 6, 4, 60, 2, 6, 6, 56, 2, 24, 2, 16, 10, 6, 2, 202, 5, 18, 4, 18, 2, 58, 6, 52, 6, 6, 2, 66, 2, 6, 16, 717, 4, 18, 2, 18, 4, 18, 2, 218, 2, 6, 12
Offset: 1

Views

Author

Ben Branman, Jan 25 2012

Keywords

Programs

  • Mathematica
    con[f_, g_, x_] := Sum[f[k] g[x/k], {k, Divisors[x]}];Table[con[FiniteGroupCount, FiniteGroupCount, x], {x, 1, 100}]
  • PARI
    DC(a,b)=vector(min(#a,#b),n,sumdiv(n,d,a[d]*b[n/d]))
    A185291=DC(A1,A1) /* where A1 is a vector of the first values of A000001 */ - M. F. Hasler, Jan 26 2012

Extensions

Data and Mmca code corrected by M. F. Hasler, Jan 26 2012

A118712 a(n) = Determinant of n X n circulant matrix whose first row is A000001(1), A000001(2), ..., A000001(n) where A000001(n) = number of groups of order n.

Original entry on oeis.org

1, 0, 0, -5, 6, -16, 9, -134400, 647248, -1711908, 6076067, -85248000, 116477425, -1764364437, 909276004, -522319050599375232, 14313181351994538493, -165893335414907083200, 2939566160282258664451, -5007637771411479278976, 75399747694572065660672
Offset: 1

Views

Author

Jonathan Vos Post, May 20 2006

Keywords

Examples

			a(4) = -5 because of the determinant -5 =
|1,1,1,2|
|2,1,1,1|
|1,2,1,1|
|1,1,2,1|.
a(11) = 6076067 = determinant
|1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1|
|1, 1, 1, 1, 2, 1, 2, 1, 5, 2, 2|
|2, 1, 1, 1, 1, 2, 1, 2, 1, 5, 2|
|2, 2, 1, 1, 1, 1, 2, 1, 2, 1, 5|
|5, 2, 2, 1, 1, 1, 1, 2, 1, 2, 1|
|1, 5, 2, 2, 1, 1, 1, 1, 2, 1, 2|
|2, 1, 5, 2, 2, 1, 1, 1, 1, 2, 1|
|1, 2, 1, 5, 2, 2, 1, 1, 1, 1, 2|
|2, 1, 2, 1, 5, 2, 2, 1, 1, 1, 1|
|1, 2, 1, 2, 1, 5, 2, 2, 1, 1, 1|
|1, 1, 2, 1, 2, 1, 5, 2, 2, 1, 1|.
		

Crossrefs

Programs

  • GAP
    A118712 := n -> DeterminantMat(List([0..n-1], i->List([0..n-1], j->NrSmallGroups(((j-i) mod n)+1)))); # Eric M. Schmidt, Nov 17 2013

Extensions

a(1) corrected by and more terms from Eric M. Schmidt, Nov 17 2013

A142862 Semiprimes n (A001358) for which A000001(n) is 1.

Original entry on oeis.org

15, 33, 35, 51, 65, 69, 77, 85, 87, 91, 95, 115, 119, 123, 133, 141, 143, 145, 159, 161, 177, 185, 187, 209, 213, 215, 217, 221, 235, 247, 249, 259, 265, 267, 287, 295, 299, 303, 319, 321, 323, 329, 335, 339, 341, 365, 371, 377, 391, 393, 395, 403, 407, 411
Offset: 1

Views

Author

N. J. A. Sloane, Oct 03 2008

Keywords

Comments

Semiprimes pq with pT. D. Noe, Oct 08 2008

References

  • D. S. Dummit and R. M. Foote, Abstract Algebra, Wiley, 3rd Edition, 2003, page 135.

Crossrefs

Programs

  • Mathematica
    Select[Select[Range[1000],FactorInteger[#][[All, 2]] == {1, 1} &], !
    Divisible[FactorInteger[#][[2, 1]] - 1, FactorInteger[#][[1, 1]]] &] (* Geoffrey Critzer, Nov 07 2015 *)

Extensions

More terms from R. J. Mathar, Oct 04 2008

A142863 Semiprimes n (A001358) for which A000001(n) is 2.

Original entry on oeis.org

4, 6, 9, 10, 14, 21, 22, 25, 26, 34, 38, 39, 46, 49, 55, 57, 58, 62, 74, 82, 86, 93, 94, 106, 111, 118, 121, 122, 129, 134, 142, 146, 155, 158, 166, 169, 178, 183, 194, 201, 202, 203, 205, 206, 214, 218, 219, 226, 237, 253, 254, 262, 274, 278, 289, 291, 298, 301
Offset: 1

Views

Author

N. J. A. Sloane, Oct 03 2008

Keywords

Comments

Semiprimes p^2 or pq with pT. D. Noe, Oct 08 2008

Crossrefs

Extensions

More terms from R. J. Mathar, Oct 04 2008

A173930 Decimal expansion of the number whose continued fraction expansion is A000001.

Original entry on oeis.org

1, 5, 7, 7, 1, 6, 3, 3, 7, 0, 3, 4, 3, 2, 2, 1, 3, 4, 9, 8, 6, 1, 0, 8, 9, 3, 4, 5, 9, 6, 8, 8, 0, 8, 6, 0, 4, 8, 0, 1, 2, 0, 8, 6, 1, 4, 2, 9, 0, 5, 4, 3, 0, 3, 4, 9, 0, 8, 9, 3, 4, 5, 0, 2, 0, 0, 0, 9, 8, 8, 5, 3, 1, 2, 2, 8, 7, 6
Offset: 1

Views

Author

Schmieding-Forland (Kerranti(AT)gmail.com), Mar 02 2010

Keywords

Examples

			1.577163370... = 1/(1+1/(1+1/(1+1/(2+... +1/(A000001(i)+...
		

Crossrefs

Cf. A000001.

Programs

  • Maple
    Digits := 80 ; read("transforms3") ;
    L := BFILETOLIST("b000001.txt") ; for n from 80 to 200 do x := numtheory[nthconver](L,n) ; x := evalf(x) ; print(x) ; end do : # R. J. Mathar, Mar 05 2010
  • Mathematica
    FiniteGroupCount[Range[80]] // FromContinuedFraction // N[#, 80]& // RealDigits // First (* Jean-François Alcover, Apr 06 2020 *)

Extensions

Keyword:cons added, more digits appended by R. J. Mathar, Mar 05 2010

A184335 Numbers k such that A000001(k) > 1 and A000001(k) | k.

Original entry on oeis.org

4, 6, 10, 14, 20, 22, 26, 28, 34, 38, 42, 44, 46, 50, 58, 62, 74, 75, 76, 78, 82, 86, 90, 92, 94, 106, 114, 118, 122, 124, 125, 134, 135, 142, 146, 158, 166, 172, 178, 186, 188, 194, 202, 204, 206, 214, 218, 222, 226, 236, 254, 258
Offset: 1

Views

Author

Jonathan Vos Post, Feb 13 2011

Keywords

Comments

Numbers k such that the number of groups of order k (when greater than 1) divides the group order k. I require a proper divisor > 1 because trivially for any p there is 1 group (the cyclic group) of order p, and 1 | p. Even semiprimes A100484 are a proper subset, because when k = p*q for primes p and q, then A000001(k) = 1 if gcd(p,q-1) = 1, 2 if gcd(p,q-1) = p, and (p < q).

Examples

			a(11) = 42 is in the sequence because there are 6 nonisomorphic groups of order 42, and 42/6 = 7.
a(18) = 75 is the first odd value, because there are 5 nonisomorphic groups of order 75, and 75/5 = 15. The next odd value is 125.
		

Crossrefs

Extensions

a(44) - a(52) from Nathaniel Johnston, Apr 26 2011

A208769 Dirichlet inverse of the finite group count (A000001).

Original entry on oeis.org

1, -1, -1, -1, -1, 0, -1, -2, -1, 0, -1, 0, -1, 0, 1, -5, -1, 0, -1, 0, 0, 0, -1, -1, -1, 0, -2, 1, -1, 0, -1, -23, 1, 0, 1, 0, -1, 0, 0, 0, -1, 0, -1, 1, 1, 0, -1, -8, -1, 0, 1, 0, -1, -1, 0, -1, 0, 0, -1, 0, -1, 0, 1, -159, 1, 0, -1, 0, 1, 0, -1, -6, -1, 0, 0, 1, 1, 0, -1, -10, -6, 0, -1, 1, 1, 0, 1, 0, -1, 0, 1, 1, 0, 0, 1, -60, -1, 0, 1, -2, -1, 0, -1, 0
Offset: 1

Views

Author

Ben Branman, Mar 01 2012

Keywords

Crossrefs

Cf. A129667 (abelian version), A000688, A000001, A185291.

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = -Sum[FiniteGroupCount[n/k] a[k], {k, Drop[Divisors[n], -1]}]; Table[a[n], {n, 100}]
  • PARI
    v000001 = readvec("b000001_to.txt"); \\ Prepared with gawk ' { print $2 } ' from the b-file of A000001.
    A000001(n) = v000001[1+n];
    A208769(n) = if(1==n,1,-sumdiv(n,d,if(dA000001(n/d)*A208769(d),0))); \\ Antti Karttunen, Jun 13 2018, after Mathematica-code

Formula

a(1) = 1; for n > 1, a(n) = -Sum_{d|n, dA000001(n/d)*a(d). - Antti Karttunen, Jun 13 2018

Extensions

More terms from Antti Karttunen, Jun 13 2018
Showing 1-10 of 168 results. Next