Alex Meiburg has authored 7 sequences.
A360839
Number of minimal graphs of twin-width 2 on n unlabeled vertices.
Original entry on oeis.org
1, 6, 32, 103, 250, 220
Offset: 5
For n=5, the only case is the 5-cycle C5, thus a(5)=1 is the first term.
For n=6, there are the C6, the S3, and Antenna graphs (by the terminology of GraphClasses.org, see Links), and their complements. Thus a(6)=6.
A346695
Numbers with more divisors than digits in their binary representation.
Original entry on oeis.org
6, 12, 18, 20, 24, 28, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 84, 88, 90, 96, 100, 102, 104, 105, 108, 110, 112, 114, 120, 126, 132, 140, 144, 150, 156, 160, 162, 168, 176, 180, 192, 196, 198, 200, 204, 208, 210, 216, 220, 224, 225, 228, 234, 240, 252, 260
Offset: 1
12 has 6 divisors: {1,2,3,4,6,12}. 12 is written in binary as 1100, which has 4 digits. Since 6 > 4, 12 is in the sequence.
Cf.
A135772 (equal number rather than more).
Cf.
A175495 (where "binary digits in n" is replaced by "log_2(n)").
-
Select[Range[1000], (DivisorSigma[0, #] > Floor[1 + Log2[#]]) &]
-
isok(m) = numdiv(m) > #binary(m); \\ Michel Marcus, Jul 29 2021
-
from sympy import divisor_count
def ok(n): return divisor_count(n) > n.bit_length()
print(list(filter(ok, range(1, 261)))) # Michael S. Branicky, Jul 29 2021
A297359
Array read by antidiagonals: Pascal-like recursion and self-referential boundaries.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 2, 4, 6, 4, 2, 1, 6, 10, 10, 6, 1, 1, 7, 16, 20, 16, 7, 1, 3, 8, 23, 36, 36, 23, 8, 3, 3, 11, 31, 59, 72, 59, 31, 11, 3, 1, 14, 42, 90, 131, 131, 90, 42, 14, 1, 2, 15, 56, 132, 221, 262, 221, 132, 56, 15, 2, 4, 17, 71, 188, 353, 483, 483, 353, 188, 71, 17, 4, 6, 21, 88, 259, 541, 836, 966, 836, 541, 259
Offset: 1
The array looks like
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 2, ...
1, 2, 3, 4, 6, 7, 8, 11, 14, 15, 17, ...
1, 3, 6, 10, 16, 23, 31, 42, 56, 71, 88, ...
1, 4, 10, 20, 36, 59, 90, 132, 188, 259, 347, ...
2, 6, 16, 36, 72, 131, 221, 353, 541, 800, ...
1, 7, 23, 59, 131, 262, 483, 836, 1377, ...
1, 8, 31, 90, 221, 483, 966, 1802, ...
3, 11, 42, 132, 353, 836, 1802, ...
3, 14, 56, 188, 541, 1377, ...
1, 15, 71, 259, 800, ...
2, 17, 88, 347, ...
... [Table corrected and reformatted by _Jon E. Schoenfield_, Jan 14 2018]
The defining property is that when this array is read by antidiagonals we get 1,1,1,1,2,1,... which is both the sequence itself and the top row and first column of the array.
-
t[a_, b_] := (t[a, b] = t[a, b - 1] + t[a - 1, b]);
t[0, x_] := a[x]; t[x_, 0] := a[x];
a[0] = 1; a[1] = 1;
a[x_] := With[{k = Floor[(Sqrt[8 x + 1] - 1)/2]},
t[x - k (k + 1)/2, (k + 1) (k + 2)/2 - x - 1]]
a /@ Range[60]
TableForm[ Table[t[i, j], {i, 0, 5}, {j, 0, 12}]]
A297347
List of y-coordinates in the Babylonian Spiral.
Original entry on oeis.org
0, 1, 2, 2, 1, -1, -4, -7, -10, -10, -9, -6, -2, 3, 8, 13, 17, 20, 20, 19, 17, 13, 7, 0, -7, -13, -15, -12, -7, 1, 9, 17, 23, 26, 21, 13, 4, -5, -14, -22, -25, -21, -14, -6, 4, 14, 23, 26, 19, 9, 0, 0, 1, 3, 11, 20, 30, 41, 53, 65, 76, 78, 71, 59, 48, 44, 53, 63, 75, 88, 101
Offset: 1
The first few points are (0,0), (0,1), (1,2), (3,2) -- thus the sequence starts out 0, 1, 2, 2.
The x-coordinates are given in
A297346. Norms of vectors are given in
A256111.
-
NextVec[{x_, y_}] :=
Block[{n = x^2 + y^2 + 1}, While[SquaresR[2, n] == 0, n++];
TakeSmallestBy[
Union[Flatten[(Transpose[
Transpose[Tuples[{1, -1}, 2]] #] & /@
({{#[[1]], #[[2]]}, {#[[2]], #[[1]]}})) & /@
PowersRepresentations[n, 2, 2], 2]],
Mod[ArcTan[#[[2]], #[[1]]] - ArcTan[y, x], 2 Pi] &, 1][[1]]
]
Accumulate[NestList[NextVec, {0, 1}, 500]][[;; , 2]]
A297346
List of successive x-coordinates in the Babylonian Spiral.
Original entry on oeis.org
0, 0, 1, 3, 5, 7, 7, 6, 4, 0, -4, -7, -9, -9, -8, -6, -2, 3, 9, 15, 21, 26, 29, 29, 28, 24, 17, 10, 4, 4, 5, 7, 13, 21, 28, 32, 32, 31, 29, 24, 15, 6, -1, -7, -8, -6, -1, 9, 17, 21, 15, 4, -7, -18, -26, -33, -39, -43, -43, -42, -37, -25, -15, -12, -18, -30, -39, -47, -52, -53, -51, -48, -42, -33, -22, -10, 3, 17, 31, 45, 56, 62, 54, 40, 27
Offset: 1
The first few points are (0,0), (0,1), (1,2), (3,2) -- thus the sequence starts out 0, 0, 1, 3.
The y-coordinates are given in
A297347. Norms of vectors are given in
A256111.
-
NextVec[{x_, y_}] :=
Block[{n = x^2 + y^2 + 1}, While[SquaresR[2, n] == 0, n++];
TakeSmallestBy[
Union[Flatten[(Transpose[
Transpose[Tuples[{1, -1},2]] #] & /@
({{#[[1]], #[[2]]}, {#[[2]], #[[1]]}})) & /@
PowersRepresentations[n, 2, 2], 2]],
Mod[ArcTan[#[[2]], #[[1]]] - ArcTan[y, x], 2 Pi] &, 1][[1]]
]
Accumulate[NestList[NextVec, {0, 1}, 500]][[;; , 1]]
A260273
Successively add the smallest nonzero binary number that is not a substring.
Original entry on oeis.org
1, 3, 5, 8, 11, 15, 17, 20, 23, 27, 31, 33, 36, 39, 44, 51, 56, 61, 65, 68, 71, 76, 81, 84, 87, 91, 95, 99, 104, 111, 115, 120, 125, 129, 132, 135, 140, 145, 148, 151, 157, 165, 168, 171, 175, 179, 186, 190, 194, 199, 204, 209, 216, 223, 227, 232, 241, 246
Offset: 1
Begin with a(1)=1, in binary, "1". This contains the string "1" but not "10", so we add 2. Thus a(2)=1+2=3. This also contains "1" but not "10", so we move to a(3)=3+2=5. This contains "1" and "10" but not "11", so we add 3. Thus a(4)=5+3=8. (See A261018 for the successive numbers that are added. - _N. J. A. Sloane_, Aug 17 2015)
See also
A261396 (when a(n) just passes a power of 2),
A261416 (the limiting behavior just past a power of 2).
-
a260273 n = a260273_list !! (n-1)
a260273_list = iterate (\x -> x + a261461 x) 1
-- Reinhard Zumkeller, Aug 30 2015, Aug 17 2015
-
public static void main(String[] args) {
int a=1;
for(int iter=0;iter<100;iter++){
System.out.print(a+", ");
int inc;
for(inc=1; contains(a,inc); inc++);
a+=inc;
}
}
static boolean contains(int a,int test){
int mask=(Integer.highestOneBit(test)<<1)-1;
while(a >= test){
if((a & mask) == test) return true;
a >>= 1;
}
return false;
}
-
sublistQ[L1_, L2_] := Module[{l1 = Length[L1], l2 = Length[L2], k}, If[l2 <= l1, For[k = 1, k <= l1 - l2 + 1, k++, If[L1[[k ;; k + l2 - 1]] == L2, Return[True]]]]; False];
a[1] = 1; a[n_] := a[n] = Module[{bb = IntegerDigits[a[n-1], 2], k}, For[k = 1, sublistQ[bb, IntegerDigits[k, 2]], k++]; a[n-1] + k]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Apr 01 2016 *)
NestList[Function[k, k + FromDigits[#, 2] &@ SelectFirst[IntegerDigits[Range[2^8], 2], Length@ SequencePosition[IntegerDigits[k, 2], #] == 0 &]], 1, 64] (* Michael De Vlieger, Apr 01 2016, Version 10.1 *)
-
A260273_list, a = [1], 1
for i in range(10**3):
b, s = 1, format(a,'b')
while format(b,'b') in s:
b += 1
a += b
s = format(a,'b')
A260273_list.append(a) # Chai Wah Wu, Aug 26 2015
A180263
Odd k such that (k^2 + 1)/2 is not prime.
Original entry on oeis.org
1, 7, 13, 17, 21, 23, 27, 31, 33, 37, 41, 43, 47, 53, 55, 57, 63, 67, 73, 75, 77, 81, 83, 87, 89, 91, 93, 97, 99, 103, 105, 107, 109, 111, 113, 115, 117, 119, 123, 125, 127, 129, 133, 135, 137, 143, 147, 149, 151, 153, 155, 157, 161, 163, 167, 173, 177, 179, 183, 185
Offset: 1
a(2)=7: (7^2 + 1)/2 = 25, which is not prime, so 7 is in the sequence.
(9^2 + 1)/2 = 41, which is prime, so 9 is not in the sequence.
Cf.
A027862 (primes of the form (n^2+1)/2).
-
[ n: n in [1..200 by 2] | not IsPrime((n^2+1) div 2) ];
-
a={};For[i=1,i<100,i=i+2,If[PrimeQ[(i^2+1)/2],0,AppendTo[a,i]]]Print[a]
Select[Range[1,201,2],!PrimeQ[(#^2+1)/2]&] (* Harvey P. Dale, Jan 07 2016 *)
-
isok(n) = (n%2) && !isprime((n^2 + 1)/2); \\ Michel Marcus, Nov 23 2018
Comments