cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A386377 a(n) is the number of solutions to the equation x^2 + y^3 + z^4 = w^5 where GCD(x, y, z)=1.

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 2, 2, 5, 0, 1, 1, 0, 1, 1, 1, 3, 2, 1, 2, 2, 0, 2, 2, 4, 1, 0, 2, 2, 1, 2, 1, 13, 0, 2, 0, 1, 3, 1, 1, 4, 0, 0, 7, 5, 3, 0, 2, 10, 1, 1, 2, 7, 2, 1, 1, 8, 1, 2, 1, 7, 0, 4, 3, 8, 4, 4, 1, 1, 5, 1, 0, 11, 1, 2, 0, 3, 1, 3, 5, 12, 7, 2, 2, 2, 2, 0, 1, 14, 2, 2, 1
Offset: 1

Views

Author

David A. Corneth and Zhining Yang, Jul 20 2025

Keywords

Examples

			a(9) = 5 because x^2 + y^3 + z^4 = 9^5 where GCD(x,y,z)=1 has 5 positive integer solutions :{220,22,1},{64,38,3},{241,7,5},{9,38,8},{118,29,12}.
		

Crossrefs

Programs

  • Mathematica
    f[w_]:=(c=0;zz=w^5;Do[yy=zz-z^4;Do[xx=yy-y^3;x=Sqrt@xx;
    If[IntegerQ@x,If[GCD[x,y,z]==1,c++]],{y,Floor[yy^(1/3)]}],{z,Floor[zz^(1/4)]}];c);Array[f@#&, 30]

A386521 Integers w such that the Diophantine equation x^2 + y^3 + z^4 = w^5 with GCD(x,y,z)=1 has no positive integer solutions.

Original entry on oeis.org

1, 3, 4, 5, 6, 10, 13, 22, 27, 34, 36, 42, 43, 47, 62, 72, 76, 87, 95, 102, 111, 183, 251, 279, 315, 322, 327, 344, 483, 490, 528, 615, 708, 762, 1170, 1302, 2295, 2526, 3282, 3382, 6012
Offset: 1

Views

Author

David A. Corneth and Zhining Yang, Jul 24 2025

Keywords

Comments

a(42) > 6500. - Giovanni Resta, Aug 12 2025

Examples

			9 is not a term because 9^5 = x^2 + y^3 + z^4 where GCD(x,y,z)=1 has 5 positive integer solutions: {220,22,1}, {64,38,3}, {241,7,5}, {9,38,8}, {118,29,12}.
		

Crossrefs

Programs

  • Mathematica
    f[w_]:=(c=0;zz=w^5;Do[yy=zz-z^4;Do[xx=yy-y^3;x=Sqrt@xx;
    If[IntegerQ@x,If[GCD[x,y,z]==1,c++]],{y,Floor[yy^(1/3)]}],{z,Floor[zz^(1/4)]}];c);Select[Range@50,f@#==0&]

Extensions

a(41) from Giovanni Resta, Aug 12 2025

A387023 Integers w such that the Diophantine equation x^2 + y^3 + z^4 = w^5 where GCD(x,y,z)=1 has exactly 5 positive integer solutions.

Original entry on oeis.org

9, 45, 70, 80, 120, 124, 125, 128, 133, 143, 170, 175, 180, 195, 201, 220, 224, 236, 252, 264, 275, 278, 296, 308, 311, 312, 330, 332, 336, 337, 352, 354, 355, 360, 362, 366, 374, 375, 380, 386, 390, 394, 399, 404, 411, 416, 418, 428, 430, 444, 461, 466, 477, 484, 488, 500
Offset: 1

Views

Author

Zhining Yang, Aug 13 2025

Keywords

Examples

			444 is in the sequence because 444^5 = x^2 + y^3 + z^4 where GCD (x, y, z) = 1 has exactly 5 positive integer solutions: {676786, 25603, 343}, {342332, 25775, 345}, {4123199, 5503, 544}, {2451712, 21919, 919}, {3889117, 679, 1208}.
		

Crossrefs

Programs

  • Mathematica
    Do[w5=w^5;s={};c=0;
    Do[yy=w5-z^4;Do[xx=yy-y^3;x=Sqrt@xx;
    If[IntegerQ@x,If[GCD[x,y,z]==1,c++;AppendTo[s,{x,y,z}]]],{y,Floor[yy^(1/3)]}],{z,Floor[w5^(1/4)]}];
    If[c==5,Print[w,s]],{w,100}]

A386988 a(n) is the smallest integer w such that the equation x^2 + y^4 + z^6 = w^8 where GCD(x,y,z)=1 has exactly n positive integer solutions.

Original entry on oeis.org

25, 9, 17, 53, 3
Offset: 1

Views

Author

Zhining Yang, Aug 12 2025

Keywords

Comments

a(6)>1024.

Examples

			a(3) = 17 because 17^8 = 36840^2 + 273^4 + 20^6 = 82367^2 + 24^4 + 24^6 = 48^2 + 287^4  + 24^6 and for no integer smaller than 17 we have 3 solutions.
		

Crossrefs

Cf. A386373.

Programs

  • Mathematica
    f[w_]:=(v={};c=0;w8=w^8;
    Do[yy=w8-z^6;Do[xx=yy-y^4;x=Sqrt@xx;
    If[IntegerQ@x,If[GCD[x,y,z]==1,AppendTo[v,{x,y,z}];c++]],{y,Floor[yy^(1/4)]}],{z,Floor[w8^(1/6)]}];{c,w,v});
    s=Table[{},5];
    For[k=1,k<=60,k++,r=f[k][[1]];If[s[[r]]=={},s[[r]]=f[k];Print[s[[r]]]]]
Showing 1-4 of 4 results.