A386373 a(n) is the smallest integer w such that the equation x^2 + y^3 + z^4 = w^5 where GCD(x,y,z)=1 has exactly n positive integer solutions.
2, 7, 17, 25, 9, 100, 44, 57, 117, 49, 73, 81, 33, 89, 177, 193, 305, 161, 257, 273, 425, 289, 697, 441, 313, 689, 369, 593, 809, 233, 761, 1865, 2001, 857, 1121, 649, 1353, 865, 521, 1257, 577, 681, 2081, 1409, 1169, 1753, 1801, 1201, 1745, 2833, 3853, 3649, 3353, 1305, 793
Offset: 1
Keywords
Examples
a(4) = 25 because 25^5 = 1852^2 + 185^3 + 8^4 = 2711^2 + 134^3 + 10^4 = 2472^2 + 150^3 + 23^4 = 2973^2 + 15^3 + 31^4 and no integer less than 25 has 4 solutions.
Links
- Zhining Yang, Table of n, a(n) for n = 1..70
Programs
-
Mathematica
f[w_]:=(v={};c=0;nn=w^5; Do[yy=nn-z^4;Do[xx=yy-y^3;x=Sqrt@xx; If[IntegerQ@x,If[GCD[x,y,z]==1,AppendTo[v,{x,y,z,d}];c++]],{y,Floor[yy^(1/3)]}],{z,Floor[nn^(1/4)]}];{c,w,v}); s=Table[{},20]; For[k=1,k<=100,k++,r=f[k][[1]];If[s[[r]]=={},s[[r]]=g[k];Print[s[[r]]]]]
Extensions
a(21)-a(31) from David A. Corneth, Jul 20 2025
a(32)-a(58) from Zhining Yang, Jul 31 2025
Comments