cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A386373 a(n) is the smallest integer w such that the equation x^2 + y^3 + z^4 = w^5 where GCD(x,y,z)=1 has exactly n positive integer solutions.

Original entry on oeis.org

2, 7, 17, 25, 9, 100, 44, 57, 117, 49, 73, 81, 33, 89, 177, 193, 305, 161, 257, 273, 425, 289, 697, 441, 313, 689, 369, 593, 809, 233, 761, 1865, 2001, 857, 1121, 649, 1353, 865, 521, 1257, 577, 681, 2081, 1409, 1169, 1753, 1801, 1201, 1745, 2833, 3853, 3649, 3353, 1305, 793
Offset: 1

Views

Author

Zhining Yang, Jul 19 2025

Keywords

Comments

From David A. Corneth, Jul 20 2025: (Start)
a(41) = 577. If a(41) is 1 (mod 8) then that values is exact.
For 10 <= n <= 30 we have a(n) == 1 (mod 8).
Heuristically this is no coincidence. There are 8^3 = 512 tuples (x, y, z) mod 8. The frequencies of k (mod 8) for x^2 + y^3 + z^4 for k = 0 through 7 are 64, 128, 96, 32, 64, 64, 32, 32 respectively. So 1 (mod 8) has the single largest value at 128 such tuples.
Extending this to other moduli like 56 we get the largest frequencies (7168) come from 9, 17, 25 and 33 (mod 56).
The second largest frequency is 6272 which occurs at 49 (mod 56). For n = 3, 4 and 10 <= n <= 20, 22, 30 we have a(n) == 9, 17, 25, 33 or 49 (mod 56). (End)

Examples

			a(4) = 25 because 25^5 = 1852^2 + 185^3 + 8^4 = 2711^2 + 134^3 + 10^4 = 2472^2 + 150^3 + 23^4 = 2973^2 + 15^3 + 31^4 and no integer less than 25 has 4 solutions.
		

Crossrefs

Programs

  • Mathematica
    f[w_]:=(v={};c=0;nn=w^5;
    Do[yy=nn-z^4;Do[xx=yy-y^3;x=Sqrt@xx;
    If[IntegerQ@x,If[GCD[x,y,z]==1,AppendTo[v,{x,y,z,d}];c++]],{y,Floor[yy^(1/3)]}],{z,Floor[nn^(1/4)]}];{c,w,v});
    s=Table[{},20];
    For[k=1,k<=100,k++,r=f[k][[1]];If[s[[r]]=={},s[[r]]=g[k];Print[s[[r]]]]]

Extensions

a(21)-a(31) from David A. Corneth, Jul 20 2025
a(32)-a(58) from Zhining Yang, Jul 31 2025

A386377 a(n) is the number of solutions to the equation x^2 + y^3 + z^4 = w^5 where GCD(x, y, z)=1.

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 2, 2, 5, 0, 1, 1, 0, 1, 1, 1, 3, 2, 1, 2, 2, 0, 2, 2, 4, 1, 0, 2, 2, 1, 2, 1, 13, 0, 2, 0, 1, 3, 1, 1, 4, 0, 0, 7, 5, 3, 0, 2, 10, 1, 1, 2, 7, 2, 1, 1, 8, 1, 2, 1, 7, 0, 4, 3, 8, 4, 4, 1, 1, 5, 1, 0, 11, 1, 2, 0, 3, 1, 3, 5, 12, 7, 2, 2, 2, 2, 0, 1, 14, 2, 2, 1
Offset: 1

Views

Author

David A. Corneth and Zhining Yang, Jul 20 2025

Keywords

Examples

			a(9) = 5 because x^2 + y^3 + z^4 = 9^5 where GCD(x,y,z)=1 has 5 positive integer solutions :{220,22,1},{64,38,3},{241,7,5},{9,38,8},{118,29,12}.
		

Crossrefs

Programs

  • Mathematica
    f[w_]:=(c=0;zz=w^5;Do[yy=zz-z^4;Do[xx=yy-y^3;x=Sqrt@xx;
    If[IntegerQ@x,If[GCD[x,y,z]==1,c++]],{y,Floor[yy^(1/3)]}],{z,Floor[zz^(1/4)]}];c);Array[f@#&, 30]

A387023 Integers w such that the Diophantine equation x^2 + y^3 + z^4 = w^5 where GCD(x,y,z)=1 has exactly 5 positive integer solutions.

Original entry on oeis.org

9, 45, 70, 80, 120, 124, 125, 128, 133, 143, 170, 175, 180, 195, 201, 220, 224, 236, 252, 264, 275, 278, 296, 308, 311, 312, 330, 332, 336, 337, 352, 354, 355, 360, 362, 366, 374, 375, 380, 386, 390, 394, 399, 404, 411, 416, 418, 428, 430, 444, 461, 466, 477, 484, 488, 500
Offset: 1

Views

Author

Zhining Yang, Aug 13 2025

Keywords

Examples

			444 is in the sequence because 444^5 = x^2 + y^3 + z^4 where GCD (x, y, z) = 1 has exactly 5 positive integer solutions: {676786, 25603, 343}, {342332, 25775, 345}, {4123199, 5503, 544}, {2451712, 21919, 919}, {3889117, 679, 1208}.
		

Crossrefs

Programs

  • Mathematica
    Do[w5=w^5;s={};c=0;
    Do[yy=w5-z^4;Do[xx=yy-y^3;x=Sqrt@xx;
    If[IntegerQ@x,If[GCD[x,y,z]==1,c++;AppendTo[s,{x,y,z}]]],{y,Floor[yy^(1/3)]}],{z,Floor[w5^(1/4)]}];
    If[c==5,Print[w,s]],{w,100}]
Showing 1-3 of 3 results.