A061062
Sum of squared factorials: (0!)^2 + (1!)^2 + (2!)^2 + (3!)^2 +...+ (n!)^2.
Original entry on oeis.org
1, 2, 6, 42, 618, 15018, 533418, 25935018, 1651637418, 133333531818, 13301522971818, 1606652445211818, 231049185247771818, 39006837228880411818, 7639061293780877851818, 1717651314017980301851818
Offset: 0
a(2) = 0!*0! + 1!*1! + 2!*2! = 6.
-
A061062:=n->sum((k!)^2, k=0..n): seq(A061062(n), n=0..15); # Zerinvary Lajos, Jan 22 2008
-
s=0; Table[s=s+(n!)^2, {n, 0, 20}]
Accumulate[(Range[0,20]!)^2] (* Harvey P. Dale, Apr 19 2015 *)
-
{ a=0; for (n=0, 100, write("b061062.txt", n, " ", a+=(n!)^2) ) } \\ Harry J. Smith, Jul 17 2009
A100289
Numbers k such that (1!)^2 + (2!)^2 + (3!)^2 + ... + (k!)^2 is prime.
Original entry on oeis.org
2, 3, 4, 5, 7, 8, 10, 18, 21, 42, 51, 91, 133, 177, 182, 310, 3175, 9566, 32841
Offset: 1
Cf.
A100288 (primes of the form (1!)^2 + (2!)^2 + (3!)^2 +...+ (k!)^2).
Cf.
A061062 ((0!)^2 + (1!)^2 + (2!)^2 + (3!)^2 +...+ (n!)^2).
-
L:= [seq((i!)^2, i=1..1000)]:
S:= ListTools:-PartialSums(L):
select(t -> isprime(S[t]), [$1..1000]); # Robert Israel, Jul 17 2017
-
Select[Range[200], PrimeQ[Total[Range[#]!^2]] &]
Module[{nn=350,tt},tt=Accumulate[(Range[nn]!)^2];Position[tt,?PrimeQ]]//Flatten (* The program generates the first 16 terms of the sequence. *) (* _Harvey P. Dale, Oct 12 2023 *)
-
is(n)=ispseudoprime(sum(k=1,n,k!^2)) \\ Charles R Greathouse IV, Apr 14 2015
A289945
a(n) = Sum_{k=1..n} k!^4.
Original entry on oeis.org
1, 17, 1313, 333089, 207693089, 268946253089, 645510228813089, 2643553803594573089, 17342764866576345933089, 173418555892594089945933089, 2538940579958951120707545933089, 52646414799433780559063261145933089
Offset: 1
-
Table[Sum[k!^4, {k, n}], {n, 12}]
Accumulate[(Range[15]!)^4] (* Harvey P. Dale, Jul 12 2019 *)
-
a(n) = sum(k=1, n, k!^4); \\ Michel Marcus, Jul 16 2017
A289946
a(n) = Sum_{k=1..n} k!^6.
Original entry on oeis.org
1, 65, 46721, 191149697, 2986175149697, 139317055679149697, 16390300280131775149697, 4296598745804900241599149697, 2283384320190476620685217983149697, 2283382306976051006261597069217983149697
Offset: 1
Cf.
A289947 (indices giving primes).
-
Table[Sum[k!^6, {k, n}], {n, 10}]
Accumulate[(Range[10]!)^6] (* Harvey P. Dale, May 14 2023 *)
-
a(n) = sum(k=1, n, k!^6); \\ Michel Marcus, Jul 16 2017
A100288
Primes of the form (1!)^2 + (2!)^2 + (3!)^2 +...+ (k!)^2.
Original entry on oeis.org
5, 41, 617, 15017, 25935017, 1651637417, 13301522971817, 41117342095090841723228045851817, 2616218222822143606864564493635469851817
Offset: 1
41 = (1!)^2 + (2!)^2 + (3!)^2 is prime.
Cf.
A100289 (k such that (1!)^2 + (2!)^2 + (3!)^2 + ... + (k!)^2 is prime).
-
Select[Accumulate[Table[(n!)^2,{n,30}]],PrimeQ] (* Harvey P. Dale, May 09 2025 *)
-
lista(nn) = {my(s=1); for(k=2, nn, s+=(k!)^2; if(ispseudoprime(s), print1(s, ", "))); } \\ Jinyuan Wang, Mar 08 2020
A138564
a(1) = 1; a(n) = a(n-1) + (n!)^3.
Original entry on oeis.org
1, 9, 225, 14049, 1742049, 374990049, 128399054049, 65676719822049, 47850402559694049, 47832576242431694049, 63649302669112063694049, 109966989623147836159694049, 241567605673714904675071694049
Offset: 1
a(18) = (1!)^3 + (2!)^3 + (3!)^3 + (4!)^3 + (5!)^3 + (6!)^3 + (7!)^3 + (8!)^3 + (9!)^3 + (10!)^3 + (11!)^3 + (12!)^3 + (13!)^3 + (14!)^3 + (15!)^3 + (16!)^3 + (17!)^3 + (18!)^3 = 262480797594664584673157017306412926841599694049.
-
nxt[{n_,a_}]:={n+1,a+((n+1)!)^3}; Transpose[NestList[nxt,{1,1},20]][[2]] (* Harvey P. Dale, Mar 08 2015 *)
A316777
a(n) = Sum_{k=1..n} (k!)^5.
Original entry on oeis.org
1, 33, 7809, 7970433, 24891170433, 193516654370433, 3252209580756770433, 106565314598088199970433, 6292489787293574101716770433, 629244614687684894925781716770433, 101340090272908294280184341461716770433, 25216602106682627624613336066827221716770433
Offset: 1
-
Accumulate[(Range[15]!)^5] (* Harvey P. Dale, Jan 24 2021 *)
-
{a(n) = sum(k=1, n, k!^5)}
A339311
a(n) = Sum_{k=1..n} (k!)^n.
Original entry on oeis.org
1, 5, 225, 333089, 24891170433, 139317055679149697, 82606511560391889386751489, 6984964663477899063759529684476994049, 109110688697205077023425816926479750793809817618433, 395940866162019279867473563258123776010342586429441374123441432577
Offset: 1
-
a[n_] := Sum[(k!)^n, {k, 1, n}]; Array[a, 10] (* Amiram Eldar, Apr 28 2021 *)
-
{a(n) = sum(k=1, n, k!^n)}
A138586
a(1) = 1; a(n) = a(n-1) + (n!)^7.
Original entry on oeis.org
1, 129, 280065, 4586751489, 358322666751489, 100306488365546751489, 82606511560391889386751489, 173238283180457843219993066751489, 828593116199250458889895450218986751489
Offset: 1
Showing 1-9 of 9 results.
Comments