cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A061062 Sum of squared factorials: (0!)^2 + (1!)^2 + (2!)^2 + (3!)^2 +...+ (n!)^2.

Original entry on oeis.org

1, 2, 6, 42, 618, 15018, 533418, 25935018, 1651637418, 133333531818, 13301522971818, 1606652445211818, 231049185247771818, 39006837228880411818, 7639061293780877851818, 1717651314017980301851818
Offset: 0

Views

Author

Jason Earls, May 27 2001

Keywords

Comments

There is a Kurepa-like conjecture (see A049782) for this sequence: for primes p>3, p does not divide a(p-1). However, the conjecture fails for p=20879. - T. D. Noe, Dec 08 2004

Examples

			a(2) = 0!*0! + 1!*1! + 2!*2! = 6.
		

Crossrefs

Cf. A001044, A100288 (primes of the form (1!)^2 + (2!)^2 + (3!)^2 +...+ (k!)^2), A104344 (if sum starts at k=1), A049782.

Programs

  • Maple
    A061062:=n->sum((k!)^2, k=0..n): seq(A061062(n), n=0..15); # Zerinvary Lajos, Jan 22 2008
  • Mathematica
    s=0; Table[s=s+(n!)^2, {n, 0, 20}]
    Accumulate[(Range[0,20]!)^2] (* Harvey P. Dale, Apr 19 2015 *)
  • PARI
    { a=0; for (n=0, 100, write("b061062.txt", n, " ", a+=(n!)^2) ) } \\ Harry J. Smith, Jul 17 2009

Formula

a(n) = sum(k=0...n, (n-k)!^2 ). - Ross La Haye, Sep 21 2004
Recurrence: a(0) = 1, a(1) = 2, a(n) = (n^2+1)*a(n-1) - n^2*a(n-2). - Vladimir Reshetnikov, Oct 28 2015

Extensions

More terms from T. D. Noe, Dec 08 2004

A100289 Numbers k such that (1!)^2 + (2!)^2 + (3!)^2 + ... + (k!)^2 is prime.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 10, 18, 21, 42, 51, 91, 133, 177, 182, 310, 3175, 9566, 32841
Offset: 1

Views

Author

T. D. Noe, Nov 11 2004 and Dec 11 2004

Keywords

Comments

All k <= 310 yield provable primes.
Write the sum as S(2,k)-1, where S(m,k) = Sum_{i=0..k} (i!)^m. Let p=1248829. Because p divides S(2,p-1)-1, p divides S(2,k)-1 for all k >= p-1. Hence there are no primes for k >= p-1.

Crossrefs

Cf. A100288 (primes of the form (1!)^2 + (2!)^2 + (3!)^2 +...+ (k!)^2).
Cf. A061062 ((0!)^2 + (1!)^2 + (2!)^2 + (3!)^2 +...+ (n!)^2).
Cf. A289947 (k!^6), A290014 (k!^10).
Cf. also A104344.

Programs

Extensions

a(18) from T. D. Noe, Feb 15 2006
a(19) from Serge Batalov, Jul 29 2017

A289945 a(n) = Sum_{k=1..n} k!^4.

Original entry on oeis.org

1, 17, 1313, 333089, 207693089, 268946253089, 645510228813089, 2643553803594573089, 17342764866576345933089, 173418555892594089945933089, 2538940579958951120707545933089, 52646414799433780559063261145933089
Offset: 1

Views

Author

Eric W. Weisstein, Jul 16 2017

Keywords

Comments

The only prime in this sequence is a(2) = 17 since a(n) is divisible by 13 for n >= 12 and there are no other primes with n < 12.

Crossrefs

Cf. A007489 (k!), A104344 (k!^2), A289946 (k!^6).

Programs

  • Mathematica
    Table[Sum[k!^4, {k, n}], {n, 12}]
    Accumulate[(Range[15]!)^4] (* Harvey P. Dale, Jul 12 2019 *)
  • PARI
    a(n) = sum(k=1, n, k!^4); \\ Michel Marcus, Jul 16 2017

A289946 a(n) = Sum_{k=1..n} k!^6.

Original entry on oeis.org

1, 65, 46721, 191149697, 2986175149697, 139317055679149697, 16390300280131775149697, 4296598745804900241599149697, 2283384320190476620685217983149697, 2283382306976051006261597069217983149697
Offset: 1

Views

Author

Eric W. Weisstein, Jul 16 2017

Keywords

Crossrefs

Cf. A007489 (k!), A104344 (k!^2), A289945 (k!^4).
Cf. A289947 (indices giving primes).

Programs

  • Mathematica
    Table[Sum[k!^6, {k, n}], {n, 10}]
    Accumulate[(Range[10]!)^6] (* Harvey P. Dale, May 14 2023 *)
  • PARI
    a(n) = sum(k=1, n, k!^6); \\ Michel Marcus, Jul 16 2017

A100288 Primes of the form (1!)^2 + (2!)^2 + (3!)^2 +...+ (k!)^2.

Original entry on oeis.org

5, 41, 617, 15017, 25935017, 1651637417, 13301522971817, 41117342095090841723228045851817, 2616218222822143606864564493635469851817
Offset: 1

Views

Author

T. D. Noe, Nov 11 2004

Keywords

Comments

Jonathan Vos Post contributed these numbers to Prime Curios.

Examples

			41 = (1!)^2 + (2!)^2 + (3!)^2 is prime.
		

Crossrefs

Cf. A100289 (k such that (1!)^2 + (2!)^2 + (3!)^2 + ... + (k!)^2 is prime).
See also A061062, A104344.

Programs

  • Mathematica
    Select[Accumulate[Table[(n!)^2,{n,30}]],PrimeQ] (* Harvey P. Dale, May 09 2025 *)
  • PARI
    lista(nn) = {my(s=1); for(k=2, nn, s+=(k!)^2; if(ispseudoprime(s), print1(s, ", "))); } \\ Jinyuan Wang, Mar 08 2020

A138564 a(1) = 1; a(n) = a(n-1) + (n!)^3.

Original entry on oeis.org

1, 9, 225, 14049, 1742049, 374990049, 128399054049, 65676719822049, 47850402559694049, 47832576242431694049, 63649302669112063694049, 109966989623147836159694049, 241567605673714904675071694049
Offset: 1

Views

Author

Jonathan Vos Post, May 18 2008

Keywords

Comments

By sum of cubes factorization, every a(n) > 1 is a multiple of 9, hence none of these are prime, unlike the case of sum of squares of factorials (i.e. (1!)^2 + (2!)^2+ (3!)^2+ (4!)^2 = 617 is prime; 41117342095090841723228045851817 = (1!)^2 + (2!)^2 + (3!)^2 + (4!)^2 + (5!)^2 + (6!)^2 + (7!)^2 + (8!)^2 + (9!)^2 + (10!)^2 + (11!)^2 + (12!)^2 + (13!)^2 + (14!)^2 + (15!)^2 + (16!)^2 + (17!)^2 + (18!)^2 is prime).

Examples

			a(18) = (1!)^3 + (2!)^3 + (3!)^3 + (4!)^3 + (5!)^3 + (6!)^3 + (7!)^3 + (8!)^3 + (9!)^3 + (10!)^3 + (11!)^3 + (12!)^3 + (13!)^3 + (14!)^3 + (15!)^3 + (16!)^3 + (17!)^3 + (18!)^3 = 262480797594664584673157017306412926841599694049.
		

Crossrefs

Sum_{k=1..n} (k!)^m: A007489 (m=1), A104344 (m=2), this sequence (m=3), A289945 (m=4), A289946 (m=6).

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,a+((n+1)!)^3}; Transpose[NestList[nxt,{1,1},20]][[2]] (* Harvey P. Dale, Mar 08 2015 *)

Formula

a(n) = Sum_{k=1..n} (k!)^3 = Sum_{k=1..n} A000578(A000142(n)).

A316777 a(n) = Sum_{k=1..n} (k!)^5.

Original entry on oeis.org

1, 33, 7809, 7970433, 24891170433, 193516654370433, 3252209580756770433, 106565314598088199970433, 6292489787293574101716770433, 629244614687684894925781716770433, 101340090272908294280184341461716770433, 25216602106682627624613336066827221716770433
Offset: 1

Views

Author

Seiichi Manyama, Aug 03 2018

Keywords

Crossrefs

Sum_{k=1..n} (k!)^m: A007489 (m=1), A104344 (m=2), A138564 (m=3), A289945 (m=4), this sequence (m=5), A289946 (m=6).

Programs

  • Mathematica
    Accumulate[(Range[15]!)^5] (* Harvey P. Dale, Jan 24 2021 *)
  • PARI
    {a(n) = sum(k=1, n, k!^5)}

A339311 a(n) = Sum_{k=1..n} (k!)^n.

Original entry on oeis.org

1, 5, 225, 333089, 24891170433, 139317055679149697, 82606511560391889386751489, 6984964663477899063759529684476994049, 109110688697205077023425816926479750793809817618433, 395940866162019279867473563258123776010342586429441374123441432577
Offset: 1

Views

Author

Seiichi Manyama, Nov 29 2020

Keywords

Crossrefs

Sum_{k=1..n} (k!)^m: A007489 (m=1), A104344 (m=2), A138564 (m=3), A289945 (m=4), A316777 (m=5), A289946 (m=6).

Programs

  • Mathematica
    a[n_] := Sum[(k!)^n, {k, 1, n}]; Array[a, 10] (* Amiram Eldar, Apr 28 2021 *)
  • PARI
    {a(n) = sum(k=1, n, k!^n)}

A138586 a(1) = 1; a(n) = a(n-1) + (n!)^7.

Original entry on oeis.org

1, 129, 280065, 4586751489, 358322666751489, 100306488365546751489, 82606511560391889386751489, 173238283180457843219993066751489, 828593116199250458889895450218986751489
Offset: 1

Views

Author

Jonathan Vos Post, May 18 2008

Keywords

Comments

After a(1) = 1 these are all divisible by 3. a(n)/3 is prime (i.e. a(n) is semiprime) for n = 2, 4 (i.e. (1!)^7 + (2!)^7 + (3!)^7 + (4!)^7 = 4586751489 = 3 * 1528917163) and then when next?

Crossrefs

Formula

a(n) = Sum_{k=1..n} (k!)^7 = Sum_{k=1..n} A001015(A000142(n)).
Showing 1-9 of 9 results.