A061062
Sum of squared factorials: (0!)^2 + (1!)^2 + (2!)^2 + (3!)^2 +...+ (n!)^2.
Original entry on oeis.org
1, 2, 6, 42, 618, 15018, 533418, 25935018, 1651637418, 133333531818, 13301522971818, 1606652445211818, 231049185247771818, 39006837228880411818, 7639061293780877851818, 1717651314017980301851818
Offset: 0
a(2) = 0!*0! + 1!*1! + 2!*2! = 6.
-
A061062:=n->sum((k!)^2, k=0..n): seq(A061062(n), n=0..15); # Zerinvary Lajos, Jan 22 2008
-
s=0; Table[s=s+(n!)^2, {n, 0, 20}]
Accumulate[(Range[0,20]!)^2] (* Harvey P. Dale, Apr 19 2015 *)
-
{ a=0; for (n=0, 100, write("b061062.txt", n, " ", a+=(n!)^2) ) } \\ Harry J. Smith, Jul 17 2009
A100289
Numbers k such that (1!)^2 + (2!)^2 + (3!)^2 + ... + (k!)^2 is prime.
Original entry on oeis.org
2, 3, 4, 5, 7, 8, 10, 18, 21, 42, 51, 91, 133, 177, 182, 310, 3175, 9566, 32841
Offset: 1
Cf.
A100288 (primes of the form (1!)^2 + (2!)^2 + (3!)^2 +...+ (k!)^2).
Cf.
A061062 ((0!)^2 + (1!)^2 + (2!)^2 + (3!)^2 +...+ (n!)^2).
-
L:= [seq((i!)^2, i=1..1000)]:
S:= ListTools:-PartialSums(L):
select(t -> isprime(S[t]), [$1..1000]); # Robert Israel, Jul 17 2017
-
Select[Range[200], PrimeQ[Total[Range[#]!^2]] &]
Module[{nn=350,tt},tt=Accumulate[(Range[nn]!)^2];Position[tt,?PrimeQ]]//Flatten (* The program generates the first 16 terms of the sequence. *) (* _Harvey P. Dale, Oct 12 2023 *)
-
is(n)=ispseudoprime(sum(k=1,n,k!^2)) \\ Charles R Greathouse IV, Apr 14 2015
A138564
a(1) = 1; a(n) = a(n-1) + (n!)^3.
Original entry on oeis.org
1, 9, 225, 14049, 1742049, 374990049, 128399054049, 65676719822049, 47850402559694049, 47832576242431694049, 63649302669112063694049, 109966989623147836159694049, 241567605673714904675071694049
Offset: 1
a(18) = (1!)^3 + (2!)^3 + (3!)^3 + (4!)^3 + (5!)^3 + (6!)^3 + (7!)^3 + (8!)^3 + (9!)^3 + (10!)^3 + (11!)^3 + (12!)^3 + (13!)^3 + (14!)^3 + (15!)^3 + (16!)^3 + (17!)^3 + (18!)^3 = 262480797594664584673157017306412926841599694049.
-
nxt[{n_,a_}]:={n+1,a+((n+1)!)^3}; Transpose[NestList[nxt,{1,1},20]][[2]] (* Harvey P. Dale, Mar 08 2015 *)
A101746
Primes of the form ((0!)^2+(1!)^2+(2!)^2+...+(n!)^2)/6.
Original entry on oeis.org
7, 103, 2503, 88903, 4322503, 2473107965928318342544472044975303
Offset: 1
-
f2=1; s=2; Do[f2=f2*n*n; s=s+f2; If[PrimeQ[s/6], Print[{n, s/6}]], {n, 2, 100}]
Select[Accumulate[(Range[0,25]!)^2]/6,PrimeQ] (* Harvey P. Dale, Aug 31 2021 *)
A101747
Numbers n such that ((0!)^2+(1!)^2+(2!)^2+...+(n!)^2)/6 is prime.
Original entry on oeis.org
3, 4, 5, 6, 7, 19, 40, 56, 93
Offset: 1
-
f2=1; s=2; Do[f2=f2*n*n; s=s+f2; If[PrimeQ[s/6], Print[{n, s/6}]], {n, 2, 100}]
A138586
a(1) = 1; a(n) = a(n-1) + (n!)^7.
Original entry on oeis.org
1, 129, 280065, 4586751489, 358322666751489, 100306488365546751489, 82606511560391889386751489, 173238283180457843219993066751489, 828593116199250458889895450218986751489
Offset: 1
Showing 1-6 of 6 results.
Comments