cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A289545 Number of flags in an n-dimensional vector space over GF(2).

Original entry on oeis.org

1, 1, 4, 36, 696, 27808, 2257888, 369572160, 121459776768, 79991977040128, 105466641591287296, 278244130564826548224, 1468496684404408240109568, 15502543140842029367582248960, 327332729703063815298568073396224, 13823536566775628445052117519260598272
Offset: 0

Views

Author

Geoffrey Critzer, Jul 28 2017

Keywords

Crossrefs

Cf. A381299.
Column k=2 of A381426.

Programs

  • Maple
    b:= proc(o, u, t) option remember; `if`(u+o=0, 1, `if`(t=1,
          b(u+o, 0$2), 0)+add(2^(u+j-1)*b(o-j, u+j-1, 1), j=1..o))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..16);  # Alois P. Heinz, Feb 21 2025
  • Mathematica
    nn = 15; eq[z_] :=Sum[z^n/FunctionExpand[QFactorial[n, q]], {n, 0, nn}];Table[FunctionExpand[QFactorial[n, q]] /. q -> 2, {n, 0,
       nn}] CoefficientList[Series[ 1/(1 - (eq[z] - 1)) /. q -> 2, {z, 0, nn}], z]

Formula

a(n) = Sum A005329(n)/( A005329(n_1)*A005329(n_2)*...*A005329(n_k) ) where the sum is over all compositions of n = n_1 + n_2 + ... + n_k.
G.f. a(n)/A005329(n) is the coefficient of x^n in 1/(2 - eq(x)) where eq(x) is the 2-exponential function.
a(n) = Sum_{k=0..binomial(n,2)} 2^k * A381299(n,k). - Alois P. Heinz, Feb 21 2025

A381369 A(n,k) is the sum over all partitions of [n] of k^j for a partition with j inversions; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 5, 8, 1, 1, 2, 6, 15, 16, 1, 1, 2, 7, 28, 52, 32, 1, 1, 2, 8, 47, 204, 203, 64, 1, 1, 2, 9, 72, 628, 2344, 877, 128, 1, 1, 2, 10, 103, 1552, 17327, 43160, 4140, 256, 1, 1, 2, 11, 140, 3276, 84416, 1022983, 1291952, 21147, 512
Offset: 0

Views

Author

Alois P. Heinz, Feb 21 2025

Keywords

Examples

			Square array A(n,k) begins:
   1,   1,    1,     1,     1,      1,      1, ...
   1,   1,    1,     1,     1,      1,      1, ...
   2,   2,    2,     2,     2,      2,      2, ...
   4,   5,    6,     7,     8,      9,     10, ...
   8,  15,   28,    47,    72,    103,    140, ...
  16,  52,  204,   628,  1552,   3276,   6172, ...
  32, 203, 2344, 17327, 84416, 307867, 915848, ...
		

Crossrefs

Columns k=0-5 give: A011782, A000110, A125812, A125813, A125814, A125815.
Main diagonal gives A381373.

Programs

  • Maple
    b:= proc(o, u, t, k) option remember;
         `if`(u+o=0, 1, `if`(t>0, b(u+o, 0$2, k), 0)+add(k^(u+j-1)*
            b(o-j, u+j-1, min(2, t+1), k), j=`if`(t=0, 1, 1..o)))
        end:
    A:= (n, k)-> b(n, 0$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    Unprotect[Power]; 0^0 = 1; Protect[Power];
    b[o_, u_, t_, k_] := b[o, u, t, k] =
       If[u + o == 0, 1, If[t > 0, b[u + o, 0, 0, k], 0] + Sum[k^(u + j - 1)*
       b[o - j, u + j - 1, Min[2, t + 1], k], {j, If[t == 0, {1}, Range[o]]}]];
    A[n_, k_] := b[n, 0, 0, k];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Mar 15 2025, after Alois P. Heinz *)

Formula

A(n,k) = Sum_{j>=0} k^j * A125810(n,j).

A347841 a(n) is the number of (strict) chains of subspaces with ends 0 and (F_3)^n.

Original entry on oeis.org

1, 1, 5, 79, 3851, 567733, 251790113, 335313799327, 1340040415899803, 16067553466179577453, 577986341168068075687337, 62375143109859674070751394743, 20194282336027244435564571244298243, 19614041602745899032342581715038226919285
Offset: 0

Views

Author

Álvar Ibeas, Sep 15 2021

Keywords

Examples

			a(3) = 79 = 1 * 1 + 13 * 2 + 52 * 1, counting:
the unrefined chain 0 < (F_3)^3;
13 chains 0 < V < (F_3)^3, with dim(V) = 1; another
13 chains 0 < V < (F_3)^3, with dim(V) = 2; and
52 chains 0 < V_1 < V_2 < (F_3)^3.
		

Crossrefs

Column k=3 of A381426.

Programs

  • Maple
    b:= proc(o, u, t) option remember; `if`(u+o=0, 1, `if`(t=1,
          b(u+o, 0$2), 0)+add(3^(u+j-1)*b(o-j, u+j-1, 1), j=1..o))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..14);  # Alois P. Heinz, Feb 21 2025

Formula

a(n) = Sum_{L partition of n} A347486(n, L) * A036038(len(L), sig(L)), where sig(L) is the partition composed by the part multiplicities of L.
a(n) = Sum_{k=0..binomial(n,2)} 3^k * A381299(n,k). - Alois P. Heinz, Feb 21 2025

Extensions

a(0)=1 prepended by Alois P. Heinz, Feb 21 2025

A347842 a(n) is the number of (strict) chains of subspaces with ends 0 and (F_4)^n.

Original entry on oeis.org

1, 1, 6, 148, 14808, 5942608, 9546508128, 61355108818240, 1577381936031968640, 162213856617581098030336, 66726795842176170072717129216, 109792555585903911536355551233758208, 722612693482570097701467493432061846673408, 19023844570798442009810731239392846416136188284928
Offset: 0

Views

Author

Álvar Ibeas, Sep 15 2021

Keywords

Examples

			a(3) = 148 = 1 * 1 + 21 * 2 + 105 * 1, counting:
the unrefined chain 0 < (F_4)^3;
21 chains 0 < V < (F_4)^3, with dim(V) = 1; another
21 chains 0 < V < (F_4)^3, with dim(V) = 2; and
105 chains 0 < V_1 < V_2 < (F_4)^3.
		

Crossrefs

Column k=4 of A381426.

Programs

  • Maple
    b:= proc(o, u, t) option remember; `if`(u+o=0, 1, `if`(t=1,
          b(u+o, 0$2), 0)+add(4^(u+j-1)*b(o-j, u+j-1, 1), j=1..o))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..14);  # Alois P. Heinz, Feb 21 2025

Formula

a(n) = Sum_{L partition of n} A347487(n, L) * A036038(len(L), sig(L)), where sig(L) is the partition composed by the part multiplicities of L.
a(n) = Sum_{k=0..binomial(n,2)} 4^k * A381299(n,k). - Alois P. Heinz, Feb 21 2025

Extensions

a(0)=1 prepended by Alois P. Heinz, Feb 21 2025

A347843 a(n) is the number of (strict) chains of subspaces with ends 0 and (F_5)^n.

Original entry on oeis.org

1, 1, 7, 249, 44643, 40065301, 179833594207, 4036127700341649, 452932494435315724443, 254139954749268142006053901, 712988623255130761190069046824407, 10001434425838325885839124865408303623049, 701474672607858244757589244286886103482442884243
Offset: 0

Views

Author

Álvar Ibeas, Sep 15 2021

Keywords

Examples

			a(3) = 249 = 1 * 1 + 31 * 2 + 186 * 1, counting:
the unrefined chain 0 < (F_5)^3;
31 chains 0 < V < (F_5)^3, with dim(V) = 1; another
31 chains 0 < V < (F_5)^3, with dim(V) = 2; and
186 chains 0 < V_1 < V_2 < (F_5)^3.
		

Crossrefs

Column k=5 of A381426.

Programs

  • Maple
    b:= proc(o, u, t) option remember; `if`(u+o=0, 1, `if`(t=1,
          b(u+o, 0$2), 0)+add(5^(u+j-1)*b(o-j, u+j-1, 1), j=1..o))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..16);  # Alois P. Heinz, Feb 21 2025

Formula

a(n) = Sum_{L partition of n} A347488(n, L) * A036038(len(L), sig(L)), where sig(L) is the partition composed by the part multiplicities of L.
a(n) = Sum_{k=0..binomial(n,2)} 5^k * A381299(n,k). - Alois P. Heinz, Feb 21 2025

Extensions

a(0)=1 prepended by Alois P. Heinz, Feb 21 2025

A347844 a(n) is the number of (strict) chains of subspaces with ends 0 and (F_7)^n.

Original entry on oeis.org

1, 9, 571, 254451, 793949053, 17342194001493, 2651651342949844915, 2838097493373982791359403, 21263575996354049430406053548413, 1115175826296921591259255638404605916661, 409400558616252174531470888061523725583206190339
Offset: 1

Views

Author

Álvar Ibeas, Sep 15 2021

Keywords

Examples

			a(3) = 571 = 1 * 1 + 57 * 2 + 456 * 1, counting:
the unrefined chain 0 < (F_7)^3;
57 chains 0 < V < (F_7)^3, with dim(V) = 1; another
57 chains 0 < V < (F_7)^3, with dim(V) = 2; and
456 chains 0 < V_1 < V_2 < (F_7)^3.
		

Crossrefs

Column k=7 of A381426.

Formula

a(n) = Sum_{L partition of n} A347489(n, L) * A036038(len(L), sig(L)), where sig(L) is the partition composed by the part multiplicities of L.

A347845 a(n) is the number of (strict) chains of subspaces with ends 0 and (F_8)^n.

Original entry on oeis.org

1, 1, 10, 804, 518376, 2674194448, 110368339035808, 36440751353074277952, 96254339565438079064819328, 2033964285682509941820879401890048, 343839935881726495233403720783311789640192, 465006794599984581603302662503095770372066384585728
Offset: 0

Views

Author

Álvar Ibeas, Sep 15 2021

Keywords

Examples

			a(3) = 804 = 1 * 1 + 73 * 2 + 657 * 1, counting:
the unrefined chain 0 < (F_8)^3;
73 chains 0 < V < (F_8)^3, with dim(V) = 1; another
73 chains 0 < V < (F_8)^3, with dim(V) = 2; and
657 chains 0 < V_1 < V_2 < (F_8)^3.
		

Crossrefs

Column k=8 of A381426.

Formula

a(n) = Sum_{L partition of n} A347490(n, L) * A036038(len(L), sig(L)), where sig(L) is the partition composed by the part multiplicities of L.

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 25 2025

A347846 a(n) is the number of (strict) chains of subspaces with ends 0 and (F_9)^n.

Original entry on oeis.org

1, 1, 11, 1093, 979163, 7895396653, 572984959186643, 374244678702477629605, 2199939020346263706461674955, 116387990444553949414146511586296381, 55417662962428710787068813831544886356769891, 237482030708312867514661156730660313316831290472695733
Offset: 0

Views

Author

Álvar Ibeas, Sep 15 2021

Keywords

Examples

			a(3) = 1093 = 1 * 1 + 91 * 2 + 910 * 1, counting:
the unrefined chain 0 < (F_9)^3;
91 chains 0 < V < (F_9)^3, with dim(V) = 1; another
91 chains 0 < V < (F_9)^3, with dim(V) = 2; and
910 chains 0 < V_1 < V_2 < (F_9)^3.
		

Crossrefs

Column k=9 of A381426.

Formula

a(n) = Sum_{L partition of n} A347491(n, L) * A036038(len(L), sig(L)), where sig(L) is the partition composed by the part multiplicities of L.

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 25 2025

A381427 Sum over all ordered partitions of [n] of n^j for an ordered partition with j inversions.

Original entry on oeis.org

1, 1, 4, 79, 14808, 40065301, 2099255895008, 2651651342949844915, 96254339565438079064819328, 116387990444553949414146511586296381, 5327195120249449992420082364255283659438679552, 10333056290045508772052838892223597279253890797441054043823
Offset: 0

Views

Author

Alois P. Heinz, Feb 23 2025

Keywords

Crossrefs

Main diagonal of A381426.

Programs

  • Maple
    b:= proc(o, u, t, k) option remember; `if`(u+o=0, 1, `if`(t=1,
          b(u+o, 0$2, k), 0)+add(k^(u+j-1)*b(o-j, u+j-1, 1, k), j=1..o))
        end:
    a:= n-> b(n, 0$2, n):
    seq(a(n), n=0..11);

Formula

a(n) = Sum_{j=0..binomial(n,2)} n^j * A381299(n,j).
a(n) = A381426(n,n).
a(n) mod n = A062173(n) for n>=1.
a(n) mod 2 = A135528(n+1).

A385408 Sum over all ordered partitions of [n] of 6^j for an ordered partition with j inversions.

Original entry on oeis.org

1, 1, 8, 388, 113480, 199246816, 2099255895008, 132708276995157568, 50336523318422432038400, 114556539064849604787867141376, 1564256035642651626332994903500876288, 128158392280785912677966097933268099449960448, 62999559569114394473388668602373642996554916532377600
Offset: 0

Views

Author

Alois P. Heinz, Jun 27 2025

Keywords

Crossrefs

Column k=6 of A381426.

Programs

  • Maple
    b:= proc(o, u, t) option remember; `if`(u+o=0, 1, `if`(t=1,
          b(u+o, 0$2), 0)+add(6^(u+j-1)*b(o-j, u+j-1, 1), j=1..o))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..14);

Formula

a(n) = Sum_{k=0..binomial(n,2)} A381299(n,k)*6^k.
Showing 1-10 of 10 results.