A289545
Number of flags in an n-dimensional vector space over GF(2).
Original entry on oeis.org
1, 1, 4, 36, 696, 27808, 2257888, 369572160, 121459776768, 79991977040128, 105466641591287296, 278244130564826548224, 1468496684404408240109568, 15502543140842029367582248960, 327332729703063815298568073396224, 13823536566775628445052117519260598272
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..80
- Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
- Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
-
b:= proc(o, u, t) option remember; `if`(u+o=0, 1, `if`(t=1,
b(u+o, 0$2), 0)+add(2^(u+j-1)*b(o-j, u+j-1, 1), j=1..o))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..16); # Alois P. Heinz, Feb 21 2025
-
nn = 15; eq[z_] :=Sum[z^n/FunctionExpand[QFactorial[n, q]], {n, 0, nn}];Table[FunctionExpand[QFactorial[n, q]] /. q -> 2, {n, 0,
nn}] CoefficientList[Series[ 1/(1 - (eq[z] - 1)) /. q -> 2, {z, 0, nn}], z]
A381369
A(n,k) is the sum over all partitions of [n] of k^j for a partition with j inversions; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 5, 8, 1, 1, 2, 6, 15, 16, 1, 1, 2, 7, 28, 52, 32, 1, 1, 2, 8, 47, 204, 203, 64, 1, 1, 2, 9, 72, 628, 2344, 877, 128, 1, 1, 2, 10, 103, 1552, 17327, 43160, 4140, 256, 1, 1, 2, 11, 140, 3276, 84416, 1022983, 1291952, 21147, 512
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
2, 2, 2, 2, 2, 2, 2, ...
4, 5, 6, 7, 8, 9, 10, ...
8, 15, 28, 47, 72, 103, 140, ...
16, 52, 204, 628, 1552, 3276, 6172, ...
32, 203, 2344, 17327, 84416, 307867, 915848, ...
-
b:= proc(o, u, t, k) option remember;
`if`(u+o=0, 1, `if`(t>0, b(u+o, 0$2, k), 0)+add(k^(u+j-1)*
b(o-j, u+j-1, min(2, t+1), k), j=`if`(t=0, 1, 1..o)))
end:
A:= (n, k)-> b(n, 0$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
Unprotect[Power]; 0^0 = 1; Protect[Power];
b[o_, u_, t_, k_] := b[o, u, t, k] =
If[u + o == 0, 1, If[t > 0, b[u + o, 0, 0, k], 0] + Sum[k^(u + j - 1)*
b[o - j, u + j - 1, Min[2, t + 1], k], {j, If[t == 0, {1}, Range[o]]}]];
A[n_, k_] := b[n, 0, 0, k];
Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Mar 15 2025, after Alois P. Heinz *)
A347841
a(n) is the number of (strict) chains of subspaces with ends 0 and (F_3)^n.
Original entry on oeis.org
1, 1, 5, 79, 3851, 567733, 251790113, 335313799327, 1340040415899803, 16067553466179577453, 577986341168068075687337, 62375143109859674070751394743, 20194282336027244435564571244298243, 19614041602745899032342581715038226919285
Offset: 0
a(3) = 79 = 1 * 1 + 13 * 2 + 52 * 1, counting:
the unrefined chain 0 < (F_3)^3;
13 chains 0 < V < (F_3)^3, with dim(V) = 1; another
13 chains 0 < V < (F_3)^3, with dim(V) = 2; and
52 chains 0 < V_1 < V_2 < (F_3)^3.
-
b:= proc(o, u, t) option remember; `if`(u+o=0, 1, `if`(t=1,
b(u+o, 0$2), 0)+add(3^(u+j-1)*b(o-j, u+j-1, 1), j=1..o))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..14); # Alois P. Heinz, Feb 21 2025
A347842
a(n) is the number of (strict) chains of subspaces with ends 0 and (F_4)^n.
Original entry on oeis.org
1, 1, 6, 148, 14808, 5942608, 9546508128, 61355108818240, 1577381936031968640, 162213856617581098030336, 66726795842176170072717129216, 109792555585903911536355551233758208, 722612693482570097701467493432061846673408, 19023844570798442009810731239392846416136188284928
Offset: 0
a(3) = 148 = 1 * 1 + 21 * 2 + 105 * 1, counting:
the unrefined chain 0 < (F_4)^3;
21 chains 0 < V < (F_4)^3, with dim(V) = 1; another
21 chains 0 < V < (F_4)^3, with dim(V) = 2; and
105 chains 0 < V_1 < V_2 < (F_4)^3.
-
b:= proc(o, u, t) option remember; `if`(u+o=0, 1, `if`(t=1,
b(u+o, 0$2), 0)+add(4^(u+j-1)*b(o-j, u+j-1, 1), j=1..o))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..14); # Alois P. Heinz, Feb 21 2025
A347843
a(n) is the number of (strict) chains of subspaces with ends 0 and (F_5)^n.
Original entry on oeis.org
1, 1, 7, 249, 44643, 40065301, 179833594207, 4036127700341649, 452932494435315724443, 254139954749268142006053901, 712988623255130761190069046824407, 10001434425838325885839124865408303623049, 701474672607858244757589244286886103482442884243
Offset: 0
a(3) = 249 = 1 * 1 + 31 * 2 + 186 * 1, counting:
the unrefined chain 0 < (F_5)^3;
31 chains 0 < V < (F_5)^3, with dim(V) = 1; another
31 chains 0 < V < (F_5)^3, with dim(V) = 2; and
186 chains 0 < V_1 < V_2 < (F_5)^3.
-
b:= proc(o, u, t) option remember; `if`(u+o=0, 1, `if`(t=1,
b(u+o, 0$2), 0)+add(5^(u+j-1)*b(o-j, u+j-1, 1), j=1..o))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..16); # Alois P. Heinz, Feb 21 2025
A347844
a(n) is the number of (strict) chains of subspaces with ends 0 and (F_7)^n.
Original entry on oeis.org
1, 9, 571, 254451, 793949053, 17342194001493, 2651651342949844915, 2838097493373982791359403, 21263575996354049430406053548413, 1115175826296921591259255638404605916661, 409400558616252174531470888061523725583206190339
Offset: 1
a(3) = 571 = 1 * 1 + 57 * 2 + 456 * 1, counting:
the unrefined chain 0 < (F_7)^3;
57 chains 0 < V < (F_7)^3, with dim(V) = 1; another
57 chains 0 < V < (F_7)^3, with dim(V) = 2; and
456 chains 0 < V_1 < V_2 < (F_7)^3.
A347845
a(n) is the number of (strict) chains of subspaces with ends 0 and (F_8)^n.
Original entry on oeis.org
1, 1, 10, 804, 518376, 2674194448, 110368339035808, 36440751353074277952, 96254339565438079064819328, 2033964285682509941820879401890048, 343839935881726495233403720783311789640192, 465006794599984581603302662503095770372066384585728
Offset: 0
a(3) = 804 = 1 * 1 + 73 * 2 + 657 * 1, counting:
the unrefined chain 0 < (F_8)^3;
73 chains 0 < V < (F_8)^3, with dim(V) = 1; another
73 chains 0 < V < (F_8)^3, with dim(V) = 2; and
657 chains 0 < V_1 < V_2 < (F_8)^3.
A347846
a(n) is the number of (strict) chains of subspaces with ends 0 and (F_9)^n.
Original entry on oeis.org
1, 1, 11, 1093, 979163, 7895396653, 572984959186643, 374244678702477629605, 2199939020346263706461674955, 116387990444553949414146511586296381, 55417662962428710787068813831544886356769891, 237482030708312867514661156730660313316831290472695733
Offset: 0
a(3) = 1093 = 1 * 1 + 91 * 2 + 910 * 1, counting:
the unrefined chain 0 < (F_9)^3;
91 chains 0 < V < (F_9)^3, with dim(V) = 1; another
91 chains 0 < V < (F_9)^3, with dim(V) = 2; and
910 chains 0 < V_1 < V_2 < (F_9)^3.
A381427
Sum over all ordered partitions of [n] of n^j for an ordered partition with j inversions.
Original entry on oeis.org
1, 1, 4, 79, 14808, 40065301, 2099255895008, 2651651342949844915, 96254339565438079064819328, 116387990444553949414146511586296381, 5327195120249449992420082364255283659438679552, 10333056290045508772052838892223597279253890797441054043823
Offset: 0
-
b:= proc(o, u, t, k) option remember; `if`(u+o=0, 1, `if`(t=1,
b(u+o, 0$2, k), 0)+add(k^(u+j-1)*b(o-j, u+j-1, 1, k), j=1..o))
end:
a:= n-> b(n, 0$2, n):
seq(a(n), n=0..11);
A385408
Sum over all ordered partitions of [n] of 6^j for an ordered partition with j inversions.
Original entry on oeis.org
1, 1, 8, 388, 113480, 199246816, 2099255895008, 132708276995157568, 50336523318422432038400, 114556539064849604787867141376, 1564256035642651626332994903500876288, 128158392280785912677966097933268099449960448, 62999559569114394473388668602373642996554916532377600
Offset: 0
-
b:= proc(o, u, t) option remember; `if`(u+o=0, 1, `if`(t=1,
b(u+o, 0$2), 0)+add(6^(u+j-1)*b(o-j, u+j-1, 1), j=1..o))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..14);
Showing 1-10 of 10 results.