A381426
A(n,k) is the sum over all ordered partitions of [n] of k^j for an ordered partition with j inversions; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 13, 8, 1, 1, 5, 36, 75, 16, 1, 1, 6, 79, 696, 541, 32, 1, 1, 7, 148, 3851, 27808, 4683, 64, 1, 1, 8, 249, 14808, 567733, 2257888, 47293, 128, 1, 1, 9, 388, 44643, 5942608, 251790113, 369572160, 545835, 256, 1, 1, 10, 571, 113480, 40065301, 9546508128, 335313799327, 121459776768, 7087261, 512
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
2, 3, 4, 5, 6, 7, 8, ...
4, 13, 36, 79, 148, 249, 388, ...
8, 75, 696, 3851, 14808, 44643, 113480, ...
16, 541, 27808, 567733, 5942608, 40065301, 199246816, ...
32, 4683, 2257888, 251790113, 9546508128, 179833594207, 2099255895008, ...
-
b:= proc(o, u, t, k) option remember; `if`(u+o=0, 1, `if`(t=1,
b(u+o, 0$2, k), 0)+add(k^(u+j-1)*b(o-j, u+j-1, 1, k), j=1..o))
end:
A:= (n, k)-> b(n, 0$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
b[o_, u_, t_, k_] := b[o, u, t, k] = If[u + o == 0, 1, If[t == 1, b[u + o, 0, 0, k], 0] + Sum[If[k == u + j - 1 == 0, 1, k^(u + j - 1)]*b[o - j, u + j - 1, 1, k], {j, 1, o}]];
A[n_, k_] := b[n, 0, 0, k];
Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Apr 19 2025, after Alois P. Heinz *)
A125812
q-Bell numbers for q=2; eigensequence of A022166, which is the triangle of Gaussian binomial coefficients [n,k] for q=2.
Original entry on oeis.org
1, 1, 2, 6, 28, 204, 2344, 43160, 1291952, 63647664, 5218320672, 719221578080, 168115994031040, 67159892835119296, 46166133463916209792, 54941957091151982047616, 113826217192695041078973184, 412563248965919999955196308224, 2627807814905396804499456018866688
Offset: 0
The recurrence a(n) = Sum_{k=0..n-1} A022166(n-1,k) * a(k) is illustrated by:
a(2) = 1*(1) + 3*(1) + 1*(2) = 6;
a(3) = 1*(1) + 7*(1) + 7*(2) + 1*(6) = 28;
a(4) = 1*(1) + 15*(1) + 35*(2) + 15*(6) + 1*(28) = 204.
Triangle A022166 begins:
1;
1, 1;
1, 3, 1;
1, 7, 7, 1;
1, 15, 35, 15, 1;
1, 31, 155, 155, 31, 1;
1, 63, 651, 1395, 651, 63, 1; ...
-
b:= proc(o, u, t) option remember;
`if`(u+o=0, 1, `if`(t>0, b(u+o, 0$2), 0)+add(2^(u+j-1)*
b(o-j, u+j-1, min(2, t+1)), j=`if`(t=0, 1, 1..o)))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..18); # Alois P. Heinz, Feb 21 2025
-
a[0] = 1; a[n_] := a[n] = Sum[QBinomial[n-1, k, 2] a[k], {k, 0, n-1}]; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Apr 09 2016 *)
-
/* q-Binomial coefficients: */ {C_q(n,k)=if(n
A125813
q-Bell numbers for q=3; eigensequence of A022167, which is the triangle of Gaussian binomial coefficients [n,k] for q=3.
Original entry on oeis.org
1, 1, 2, 7, 47, 628, 17327, 1022983, 132615812, 38522717107, 25526768401271, 39190247441314450, 141213238745969102393, 1207367655155905204747681, 24733467452839301566047854678, 1224709126636123500201799360630423, 147747406166666863538672620806542995763
Offset: 0
The recurrence: a(n) = Sum_{k=0..n-1} A022167(n-1,k) * a(k) is illustrated by:
a(2) = 1*(1) + 4*(1) + 1*(2) = 7;
a(3) = 1*(1) + 13*(1) + 13*(2) + 1*(7) = 47;
a(4) = 1*(1) + 40*(1) + 130*(2) + 40*(7) + 1*(47) = 628.
Triangle A022167 begins:
1;
1, 1;
1, 4, 1;
1, 13, 13, 1;
1, 40, 130, 40, 1;
1, 121, 1210, 1210, 121, 1;
1, 364, 11011, 33880, 11011, 364, 1;
...
-
b:= proc(o, u, t) option remember;
`if`(u+o=0, 1, `if`(t>0, b(u+o, 0$2), 0)+add(3^(u+j-1)*
b(o-j, u+j-1, min(2, t+1)), j=`if`(t=0, 1, 1..o)))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..18); # Alois P. Heinz, Feb 21 2025
-
b[o_, u_, t_] := b[o, u, t] =
If[u + o == 0, 1, If[t > 0, b[u + o, 0, 0], 0] + Sum[3^(u + j - 1)*
b[o - j, u + j - 1, Min[2, t + 1]], {j, If[t == 0, {1}, Range[o]]}]];
a[n_] := b[n, 0, 0];
Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Mar 15 2025, after Alois P. Heinz *)
-
/* q-Binomial coefficients: */
C_q(n,k)=if(n
A125815
q-Bell numbers for q=5; eigensequence of A022169, which is the triangle of Gaussian binomial coefficients [n,k] for q=5.
Original entry on oeis.org
1, 1, 2, 9, 103, 3276, 307867, 89520089, 83657942588, 258923776689771, 2717711483011792407, 98702105953049319472394, 12629828399521800714941435773, 5784963467206342855747483263957541, 9613516698678314330032600987632336641122, 58637855728567773833514895771659795097103477549
Offset: 0
The recurrence: a(n) = Sum_{k=0..n-1} A022169(n-1,k) * a(k)
is illustrated by:
a(2) = 1*(1) + 6*(1) + 1*(2) = 9;
a(3) = 1*(1) + 31*(1) + 31*(2) + 1*(9) = 103;
a(4) = 1*(1) + 156*(1) + 806*(2) + 156*(9) + 1*(103) = 3276.
Triangle A022169 begins:
1;
1, 1;
1, 6, 1;
1, 31, 31, 1;
1, 156, 806, 156, 1;
1, 781, 20306, 20306, 781, 1;
1, 3906, 508431, 2558556, 508431, 3906, 1;
...
-
b:= proc(o, u, t) option remember;
`if`(u+o=0, 1, `if`(t>0, b(u+o, 0$2), 0)+add(5^(u+j-1)*
b(o-j, u+j-1, min(2, t+1)), j=`if`(t=0, 1, 1..o)))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..18); # Alois P. Heinz, Feb 21 2025
-
b[o_, u_, t_] := b[o, u, t] =
If[u + o == 0, 1, If[t > 0, b[u + o, 0, 0], 0] + Sum[5^(u + j - 1)*
b[o - j, u + j - 1, Min[2, t + 1]], {j, If[t == 0, {1}, Range[o]]}]];
a[n_] := b[n, 0, 0];
Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Mar 15 2025, after Alois P. Heinz *)
-
/* q-Binomial coefficients: */
{C_q(n,k)=if(n
A125814
q-Bell numbers for q=4; eigensequence of A022168, which is the triangle of Gaussian binomial coefficients [n,k] for q=4.
Original entry on oeis.org
1, 1, 2, 8, 72, 1552, 84416, 12107584, 4726583424, 5150624868864, 16010990175691264, 144648776120641766400, 3857411545088966609514496, 307705704204270334224705015808, 74294186209325019487040708053442560, 54874536782175258883045772243829235417088
Offset: 0
The recurrence: a(n) = Sum_{k=0..n-1} A022168(n-1,k) * a(k) is illustrated by:
a(2) = 1*(1) + 5*(1) + 1*(2) = 8;
a(3) = 1*(1) + 21*(1) + 21*(2) + 1*(8) = 72;
a(4) = 1*(1) + 85*(1) + 357*(2) + 85*(8) + 1*(72) = 1552.
Triangle A022168 begins:
1;
1, 1;
1, 5, 1;
1, 21, 21, 1;
1, 85, 357, 85, 1;
1, 341, 5797, 5797, 341, 1;
1, 1365, 93093, 376805, 93093, 1365, 1;
...
-
b:= proc(o, u, t) option remember;
`if`(u+o=0, 1, `if`(t>0, b(u+o, 0$2), 0)+add(4^(u+j-1)*
b(o-j, u+j-1, min(2, t+1)), j=`if`(t=0, 1, 1..o)))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..18); # Alois P. Heinz, Feb 21 2025
-
b[o_, u_, t_] := b[o, u, t] =
If[u + o == 0, 1, If[t > 0, b[u + o, 0, 0], 0] + Sum[4^(u + j - 1)*
b[o - j, u + j - 1, Min[2, t + 1]], {j, If[t == 0, {1}, Range[o]]}]];
a[n_] := b[n, 0, 0];
Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Mar 15 2025, after Alois P. Heinz *)
-
/* q-Binomial coefficients: */
{C_q(n,k)=if(n
A381373
Sum over all partitions of [n] of n^j for a partition with j inversions.
Original entry on oeis.org
1, 1, 2, 7, 72, 3276, 915848, 2011878835, 42723411900032, 10608257527069388539, 35808039364308986083608352, 1828963737334508176477805993389490, 1618534282345584818909121118371843799592960, 28472613161534902071627567919297331348486838233018341
Offset: 0
-
b:= proc(o, u, t, k) option remember;
`if`(u+o=0, 1, `if`(t>0, b(u+o, 0$2, k), 0)+add(k^(u+j-1)*
b(o-j, u+j-1, min(2, t+1), k), j=`if`(t=0, 1, 1..o)))
end:
a:= n-> b(n, 0$2, n):
seq(a(n), n=0..15);
-
b[o_, u_, t_, k_] := b[o, u, t, k] =
If[u + o == 0, 1, If[t > 0, b[u + o, 0, 0, k], 0] + Sum[k^(u + j - 1)*
b[o - j, u + j - 1, Min[2, t + 1], k], {j, If[t == 0, {1}, Range[o]]}]];
a[n_] := b[n, 0, 0, n];
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Mar 15 2025, after Alois P. Heinz *)
Showing 1-6 of 6 results.