cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A381426 A(n,k) is the sum over all ordered partitions of [n] of k^j for an ordered partition with j inversions; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 13, 8, 1, 1, 5, 36, 75, 16, 1, 1, 6, 79, 696, 541, 32, 1, 1, 7, 148, 3851, 27808, 4683, 64, 1, 1, 8, 249, 14808, 567733, 2257888, 47293, 128, 1, 1, 9, 388, 44643, 5942608, 251790113, 369572160, 545835, 256, 1, 1, 10, 571, 113480, 40065301, 9546508128, 335313799327, 121459776768, 7087261, 512
Offset: 0

Views

Author

Alois P. Heinz, Feb 23 2025

Keywords

Examples

			Square array A(n,k) begins:
   1,    1,       1,         1,          1,            1,             1, ...
   1,    1,       1,         1,          1,            1,             1, ...
   2,    3,       4,         5,          6,            7,             8, ...
   4,   13,      36,        79,        148,          249,           388, ...
   8,   75,     696,      3851,      14808,        44643,        113480, ...
  16,  541,   27808,    567733,    5942608,     40065301,     199246816, ...
  32, 4683, 2257888, 251790113, 9546508128, 179833594207, 2099255895008, ...
		

Crossrefs

Main diagonal gives A381427.

Programs

  • Maple
    b:= proc(o, u, t, k) option remember; `if`(u+o=0, 1, `if`(t=1,
          b(u+o, 0$2, k), 0)+add(k^(u+j-1)*b(o-j, u+j-1, 1, k), j=1..o))
        end:
    A:= (n, k)-> b(n, 0$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[o_, u_, t_, k_] := b[o, u, t, k] = If[u + o == 0, 1, If[t == 1, b[u + o, 0, 0, k], 0] + Sum[If[k == u + j - 1 == 0, 1, k^(u + j - 1)]*b[o - j, u + j - 1, 1, k], {j, 1, o}]];
    A[n_, k_] := b[n, 0, 0, k];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Apr 19 2025, after Alois P. Heinz *)

Formula

A(n,k) = Sum_{j=0..binomial(n,2)} k^j * A381299(n,j).

A125812 q-Bell numbers for q=2; eigensequence of A022166, which is the triangle of Gaussian binomial coefficients [n,k] for q=2.

Original entry on oeis.org

1, 1, 2, 6, 28, 204, 2344, 43160, 1291952, 63647664, 5218320672, 719221578080, 168115994031040, 67159892835119296, 46166133463916209792, 54941957091151982047616, 113826217192695041078973184, 412563248965919999955196308224, 2627807814905396804499456018866688
Offset: 0

Views

Author

Paul D. Hanna, Dec 10 2006

Keywords

Examples

			The recurrence a(n) = Sum_{k=0..n-1} A022166(n-1,k) * a(k) is illustrated by:
a(2) = 1*(1) + 3*(1) + 1*(2) = 6;
a(3) = 1*(1) + 7*(1) + 7*(2) + 1*(6) = 28;
a(4) = 1*(1) + 15*(1) + 35*(2) + 15*(6) + 1*(28) = 204.
Triangle A022166 begins:
1;
1, 1;
1, 3, 1;
1, 7, 7, 1;
1, 15, 35, 15, 1;
1, 31, 155, 155, 31, 1;
1, 63, 651, 1395, 651, 63, 1; ...
		

Crossrefs

Programs

  • Maple
    b:= proc(o, u, t) option remember;
         `if`(u+o=0, 1, `if`(t>0, b(u+o, 0$2), 0)+add(2^(u+j-1)*
            b(o-j, u+j-1, min(2, t+1)), j=`if`(t=0, 1, 1..o)))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..18);  # Alois P. Heinz, Feb 21 2025
  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[QBinomial[n-1, k, 2] a[k], {k, 0, n-1}]; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Apr 09 2016 *)
  • PARI
    /* q-Binomial coefficients: */ {C_q(n,k)=if(n
    				

Formula

a(n) = Sum_{k=0..n-1} A022166(n-1,k) * a(k) for n>0, with a(0)=1.
a(n) = Sum_{k>=0} 2^k * A125810(n,k). - Alois P. Heinz, Feb 21 2025

A125813 q-Bell numbers for q=3; eigensequence of A022167, which is the triangle of Gaussian binomial coefficients [n,k] for q=3.

Original entry on oeis.org

1, 1, 2, 7, 47, 628, 17327, 1022983, 132615812, 38522717107, 25526768401271, 39190247441314450, 141213238745969102393, 1207367655155905204747681, 24733467452839301566047854678, 1224709126636123500201799360630423, 147747406166666863538672620806542995763
Offset: 0

Views

Author

Paul D. Hanna, Dec 10 2006

Keywords

Examples

			The recurrence: a(n) = Sum_{k=0..n-1} A022167(n-1,k) * a(k) is illustrated by:
  a(2) = 1*(1) + 4*(1) + 1*(2) = 7;
  a(3) = 1*(1) + 13*(1) + 13*(2) + 1*(7) = 47;
  a(4) = 1*(1) + 40*(1) + 130*(2) + 40*(7) + 1*(47) = 628.
Triangle A022167 begins:
  1;
  1, 1;
  1, 4, 1;
  1, 13, 13, 1;
  1, 40, 130, 40, 1;
  1, 121, 1210, 1210, 121, 1;
  1, 364, 11011, 33880, 11011, 364, 1;
  ...
		

Crossrefs

Programs

  • Maple
    b:= proc(o, u, t) option remember;
         `if`(u+o=0, 1, `if`(t>0, b(u+o, 0$2), 0)+add(3^(u+j-1)*
            b(o-j, u+j-1, min(2, t+1)), j=`if`(t=0, 1, 1..o)))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..18);  # Alois P. Heinz, Feb 21 2025
  • Mathematica
    b[o_, u_, t_] := b[o, u, t] =
       If[u + o == 0, 1, If[t > 0, b[u + o, 0, 0], 0] + Sum[3^(u + j - 1)*
       b[o - j, u + j - 1, Min[2, t + 1]], {j, If[t == 0, {1}, Range[o]]}]];
    a[n_] := b[n, 0, 0];
    Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Mar 15 2025, after Alois P. Heinz *)
  • PARI
    /* q-Binomial coefficients: */
    C_q(n,k)=if(n
    				

Formula

a(n) = Sum_{k=0..n-1} A022167(n-1,k) * a(k) for n>0, with a(0)=1.
a(n) = Sum_{k>=0} 3^k * A125810(n,k). - Alois P. Heinz, Feb 21 2025

A125815 q-Bell numbers for q=5; eigensequence of A022169, which is the triangle of Gaussian binomial coefficients [n,k] for q=5.

Original entry on oeis.org

1, 1, 2, 9, 103, 3276, 307867, 89520089, 83657942588, 258923776689771, 2717711483011792407, 98702105953049319472394, 12629828399521800714941435773, 5784963467206342855747483263957541, 9613516698678314330032600987632336641122, 58637855728567773833514895771659795097103477549
Offset: 0

Views

Author

Paul D. Hanna, Dec 10 2006

Keywords

Examples

			The recurrence: a(n) = Sum_{k=0..n-1} A022169(n-1,k) * a(k)
is illustrated by:
a(2) = 1*(1) + 6*(1) + 1*(2) = 9;
a(3) = 1*(1) + 31*(1) + 31*(2) + 1*(9) = 103;
a(4) = 1*(1) + 156*(1) + 806*(2) + 156*(9) + 1*(103) = 3276.
Triangle A022169 begins:
  1;
  1,    1;
  1,    6,      1;
  1,   31,     31,       1;
  1,  156,    806,     156,      1;
  1,  781,  20306,   20306,    781,    1;
  1, 3906, 508431, 2558556, 508431, 3906, 1;
  ...
		

Crossrefs

Programs

  • Maple
    b:= proc(o, u, t) option remember;
         `if`(u+o=0, 1, `if`(t>0, b(u+o, 0$2), 0)+add(5^(u+j-1)*
            b(o-j, u+j-1, min(2, t+1)), j=`if`(t=0, 1, 1..o)))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..18);  # Alois P. Heinz, Feb 21 2025
  • Mathematica
    b[o_, u_, t_] := b[o, u, t] =
       If[u + o == 0, 1, If[t > 0, b[u + o, 0, 0], 0] + Sum[5^(u + j - 1)*
       b[o - j, u + j - 1, Min[2, t + 1]], {j, If[t == 0, {1}, Range[o]]}]];
    a[n_] := b[n, 0, 0];
    Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Mar 15 2025, after Alois P. Heinz *)
  • PARI
    /* q-Binomial coefficients: */
    {C_q(n,k)=if(n
    				

Formula

a(n) = Sum_{k=0..n-1} A022169(n-1,k) * a(k) for n>0, with a(0)=1.
a(n) = Sum_{k>=0} 5^k * A125810(n,k). - Alois P. Heinz, Feb 21 2025

A125814 q-Bell numbers for q=4; eigensequence of A022168, which is the triangle of Gaussian binomial coefficients [n,k] for q=4.

Original entry on oeis.org

1, 1, 2, 8, 72, 1552, 84416, 12107584, 4726583424, 5150624868864, 16010990175691264, 144648776120641766400, 3857411545088966609514496, 307705704204270334224705015808, 74294186209325019487040708053442560, 54874536782175258883045772243829235417088
Offset: 0

Views

Author

Paul D. Hanna, Dec 10 2006

Keywords

Examples

			The recurrence: a(n) = Sum_{k=0..n-1} A022168(n-1,k) * a(k) is illustrated by:
  a(2) = 1*(1) + 5*(1) + 1*(2) = 8;
  a(3) = 1*(1) + 21*(1) + 21*(2) + 1*(8) = 72;
  a(4) = 1*(1) + 85*(1) + 357*(2) + 85*(8) + 1*(72) = 1552.
Triangle A022168 begins:
  1;
  1,    1;
  1,    5,     1;
  1,   21,    21,      1;
  1,   85,   357,     85,     1;
  1,  341,  5797,   5797,   341,    1;
  1, 1365, 93093, 376805, 93093, 1365, 1;
  ...
		

Crossrefs

Programs

  • Maple
    b:= proc(o, u, t) option remember;
         `if`(u+o=0, 1, `if`(t>0, b(u+o, 0$2), 0)+add(4^(u+j-1)*
            b(o-j, u+j-1, min(2, t+1)), j=`if`(t=0, 1, 1..o)))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..18);  # Alois P. Heinz, Feb 21 2025
  • Mathematica
    b[o_, u_, t_] := b[o, u, t] =
       If[u + o == 0, 1, If[t > 0, b[u + o, 0, 0], 0] + Sum[4^(u + j - 1)*
       b[o - j, u + j - 1, Min[2, t + 1]], {j, If[t == 0, {1}, Range[o]]}]];
    a[n_] := b[n, 0, 0];
    Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Mar 15 2025, after Alois P. Heinz *)
  • PARI
    /* q-Binomial coefficients: */
    {C_q(n,k)=if(n
    				

Formula

a(n) = Sum_{k=0..n-1} A022168(n-1,k) * a(k) for n>0, with a(0)=1.
a(n) = Sum_{k>=0} 4^k * A125810(n,k). - Alois P. Heinz, Feb 21 2025

A381373 Sum over all partitions of [n] of n^j for a partition with j inversions.

Original entry on oeis.org

1, 1, 2, 7, 72, 3276, 915848, 2011878835, 42723411900032, 10608257527069388539, 35808039364308986083608352, 1828963737334508176477805993389490, 1618534282345584818909121118371843799592960, 28472613161534902071627567919297331348486838233018341
Offset: 0

Views

Author

Alois P. Heinz, Feb 21 2025

Keywords

Crossrefs

Main diagonal of A381369.

Programs

  • Maple
    b:= proc(o, u, t, k) option remember;
         `if`(u+o=0, 1, `if`(t>0, b(u+o, 0$2, k), 0)+add(k^(u+j-1)*
            b(o-j, u+j-1, min(2, t+1), k), j=`if`(t=0, 1, 1..o)))
        end:
    a:= n-> b(n, 0$2, n):
    seq(a(n), n=0..15);
  • Mathematica
    b[o_, u_, t_, k_] := b[o, u, t, k] =
       If[u + o == 0, 1, If[t > 0, b[u + o, 0, 0, k], 0] + Sum[k^(u + j - 1)*
       b[o - j, u + j - 1, Min[2, t + 1], k], {j, If[t == 0, {1}, Range[o]]}]];
    a[n_] := b[n, 0, 0, n];
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Mar 15 2025, after Alois P. Heinz *)

Formula

a(n) = Sum_{j>=0} n^j * A125810(n,j).
a(n) = A381369(n,n).
a(n) mod n = A062173(n) for n>=1.
a(n) mod 2 = A120325(n+1) for n>=1.
Showing 1-6 of 6 results.