A125810
Triangle of q-Bell number coefficients, read by rows that form polynomials in q, giving the eigensequence for the triangle of q-binomial coefficients.
Original entry on oeis.org
1, 1, 2, 4, 1, 8, 4, 3, 16, 12, 13, 8, 3, 32, 32, 42, 38, 33, 15, 10, 1, 64, 80, 120, 133, 145, 121, 98, 60, 37, 15, 4, 128, 192, 320, 408, 507, 526, 544, 457, 391, 281, 195, 104, 61, 20, 6, 256, 448, 816, 1160, 1585, 1875, 2189, 2259, 2256, 2066, 1819, 1450, 1133, 777, 506, 300, 158, 65, 25, 4
Offset: 0
Row g.f.s B_q(n) are polynomials in q generated by:
B_q(n) = Sum_{j=0..n-1} B_q(j) * C_q(n-1,j) for n>0 with B_q(0)=1
where the triangle of q-binomial coefficients C_q(n,k) begins:
1;
1, 1;
1, 1 + q, 1;
1, 1 + q + q^2, 1 + q + q^2, 1;
1, 1 + q + q^2 + q^3, 1 + q + 2*q^2 + q^3 + q^4, 1 + q + q^2 + q^3, 1;
The initial q-Bell coefficients in B_q(n) are:
B_q(0) = 1; B_q(1) = 1; B_q(2) = 2;
B_q(3) = 4 + q;
B_q(4) = 8 + 4*q + 3*q^2;
B_q(5) = 16 + 12*q + 13*q^2 + 8*q^3 + 3*q^4;
B_q(6) = 32 + 32*q + 42*q^2 + 38*q^3 + 33*q^4 + 15*q^5 + 10*q^6 + q^7.
Number of terms in row n is given by A125811, which starts:
1,1,1,2,3,5,8,11,15,20,26,32,39,47,56,66,76,87,99,112,126,141,156,...
Triangle begins:
1;
1;
2;
4, 1;
8, 4, 3;
16, 12, 13, 8, 3;
32, 32, 42, 38, 33, 15, 10, 1;
64, 80, 120, 133, 145, 121, 98, 60, 37, 15, 4;
128, 192, 320, 408, 507, 526, 544, 457, 391, 281, 195, 104, 61, 20, 6;
256, 448, 816, 1160, 1585, 1875, 2189, 2259, 2256, 2066, 1819, 1450, 1133, 777, 506, 300, 158, 65, 25, 4;
...
-
b:= proc(o, u, t) option remember; expand(
`if`(u+o=0, 1, `if`(t>0, b(u+o, 0$2), 0)+add(x^(u+j-1)*
b(o-j, u+j-1, min(2, t+1)), j=`if`(t=0, 1, 1..o))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)):
seq(T(n), n=0..10); # Alois P. Heinz, Feb 21 2025
-
QB[n_, q_] := QB[n, q] = Sum[QB[j, q] QBinomial[n-1, j, q], {j, 0, n-1}] // FunctionExpand // Simplify; QB[0, q_]=1; QB[1, q_]=1; Table[ CoefficientList[QB[n, q], q], {n, 0, 9}] // Flatten (* Jean-François Alcover, Feb 29 2016 *)
-
/* q-Binomial coefficients: */
{C_q(n, k) = if(n
A125811
Number of coefficients in the n-th q-Bell number as a polynomial in q.
Original entry on oeis.org
1, 1, 1, 2, 3, 5, 8, 11, 15, 20, 26, 32, 39, 47, 56, 66, 76, 87, 99, 112, 126, 141, 156, 172, 189, 207, 226, 246, 267, 288, 310, 333, 357, 382, 408, 435, 463, 491, 520, 550, 581, 613, 646, 680, 715, 751, 787, 824, 862, 901, 941, 982, 1024, 1067, 1111, 1156, 1201
Offset: 0
This sequence gives the number of terms in rows of A125810.
Row g.f.s B_q(n) of A125810 are polynomials in q generated by:
B_q(n) = Sum_{j=0..n-1} B_q(j) * C_q(n-1,j) for n>0 with B_q(0)=1
where the triangle of q-binomial coefficients C_q(n,k) begins:
1;
1, 1;
1, 1 + q, 1;
1, 1 + q + q^2, 1 + q + q^2, 1;
1, 1 + q + q^2 + q^3, 1 + q + 2*q^2 + q^3 + q^4, 1 + q + q^2 + q^3, 1;
The initial q-Bell coefficients in B_q(n) are:
B_q(0) = 1; B_q(1) = 1; B_q(2) = 2;
B_q(3) = 4 + q;
B_q(4) = 8 + 4*q + 3*q^2;
B_q(5) = 16 + 12*q + 13*q^2 + 8*q^3 + 3*q^4;
B_q(6) = 32 + 32*q + 42*q^2 + 38*q^3 + 33*q^4 + 15*q^5 + 10*q^6 + q^7.
-
Cq:= proc(n,k) local j; if n nops(Bq(n)): seq(a(n), n=0..60); # Alois P. Heinz, Aug 04 2009
-
QB[n_, q_] := QB[n, q] = Sum[QB[j, q] QBinomial[n-1, j, q], {j, 0, n-1}] // FunctionExpand // Simplify; QB[0, q_]=1; QB[1, q_]=1; a[n_] := CoefficientList[QB[n, q], q] // Length; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 60}] (* Jean-François Alcover, Feb 29 2016 *)
-
/* q-Binomial coefficients: */
C_q(n,k)=if(n
-
from math import comb, isqrt
def A125811(n): return 1+comb(n,2)-sum(isqrt((k<<3)+1)-1>>1 for k in range(1,n)) # Chai Wah Wu, Feb 27 2025
A125812
q-Bell numbers for q=2; eigensequence of A022166, which is the triangle of Gaussian binomial coefficients [n,k] for q=2.
Original entry on oeis.org
1, 1, 2, 6, 28, 204, 2344, 43160, 1291952, 63647664, 5218320672, 719221578080, 168115994031040, 67159892835119296, 46166133463916209792, 54941957091151982047616, 113826217192695041078973184, 412563248965919999955196308224, 2627807814905396804499456018866688
Offset: 0
The recurrence a(n) = Sum_{k=0..n-1} A022166(n-1,k) * a(k) is illustrated by:
a(2) = 1*(1) + 3*(1) + 1*(2) = 6;
a(3) = 1*(1) + 7*(1) + 7*(2) + 1*(6) = 28;
a(4) = 1*(1) + 15*(1) + 35*(2) + 15*(6) + 1*(28) = 204.
Triangle A022166 begins:
1;
1, 1;
1, 3, 1;
1, 7, 7, 1;
1, 15, 35, 15, 1;
1, 31, 155, 155, 31, 1;
1, 63, 651, 1395, 651, 63, 1; ...
-
b:= proc(o, u, t) option remember;
`if`(u+o=0, 1, `if`(t>0, b(u+o, 0$2), 0)+add(2^(u+j-1)*
b(o-j, u+j-1, min(2, t+1)), j=`if`(t=0, 1, 1..o)))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..18); # Alois P. Heinz, Feb 21 2025
-
a[0] = 1; a[n_] := a[n] = Sum[QBinomial[n-1, k, 2] a[k], {k, 0, n-1}]; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Apr 09 2016 *)
-
/* q-Binomial coefficients: */ {C_q(n,k)=if(n
A125813
q-Bell numbers for q=3; eigensequence of A022167, which is the triangle of Gaussian binomial coefficients [n,k] for q=3.
Original entry on oeis.org
1, 1, 2, 7, 47, 628, 17327, 1022983, 132615812, 38522717107, 25526768401271, 39190247441314450, 141213238745969102393, 1207367655155905204747681, 24733467452839301566047854678, 1224709126636123500201799360630423, 147747406166666863538672620806542995763
Offset: 0
The recurrence: a(n) = Sum_{k=0..n-1} A022167(n-1,k) * a(k) is illustrated by:
a(2) = 1*(1) + 4*(1) + 1*(2) = 7;
a(3) = 1*(1) + 13*(1) + 13*(2) + 1*(7) = 47;
a(4) = 1*(1) + 40*(1) + 130*(2) + 40*(7) + 1*(47) = 628.
Triangle A022167 begins:
1;
1, 1;
1, 4, 1;
1, 13, 13, 1;
1, 40, 130, 40, 1;
1, 121, 1210, 1210, 121, 1;
1, 364, 11011, 33880, 11011, 364, 1;
...
-
b:= proc(o, u, t) option remember;
`if`(u+o=0, 1, `if`(t>0, b(u+o, 0$2), 0)+add(3^(u+j-1)*
b(o-j, u+j-1, min(2, t+1)), j=`if`(t=0, 1, 1..o)))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..18); # Alois P. Heinz, Feb 21 2025
-
b[o_, u_, t_] := b[o, u, t] =
If[u + o == 0, 1, If[t > 0, b[u + o, 0, 0], 0] + Sum[3^(u + j - 1)*
b[o - j, u + j - 1, Min[2, t + 1]], {j, If[t == 0, {1}, Range[o]]}]];
a[n_] := b[n, 0, 0];
Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Mar 15 2025, after Alois P. Heinz *)
-
/* q-Binomial coefficients: */
C_q(n,k)=if(n
A125814
q-Bell numbers for q=4; eigensequence of A022168, which is the triangle of Gaussian binomial coefficients [n,k] for q=4.
Original entry on oeis.org
1, 1, 2, 8, 72, 1552, 84416, 12107584, 4726583424, 5150624868864, 16010990175691264, 144648776120641766400, 3857411545088966609514496, 307705704204270334224705015808, 74294186209325019487040708053442560, 54874536782175258883045772243829235417088
Offset: 0
The recurrence: a(n) = Sum_{k=0..n-1} A022168(n-1,k) * a(k) is illustrated by:
a(2) = 1*(1) + 5*(1) + 1*(2) = 8;
a(3) = 1*(1) + 21*(1) + 21*(2) + 1*(8) = 72;
a(4) = 1*(1) + 85*(1) + 357*(2) + 85*(8) + 1*(72) = 1552.
Triangle A022168 begins:
1;
1, 1;
1, 5, 1;
1, 21, 21, 1;
1, 85, 357, 85, 1;
1, 341, 5797, 5797, 341, 1;
1, 1365, 93093, 376805, 93093, 1365, 1;
...
-
b:= proc(o, u, t) option remember;
`if`(u+o=0, 1, `if`(t>0, b(u+o, 0$2), 0)+add(4^(u+j-1)*
b(o-j, u+j-1, min(2, t+1)), j=`if`(t=0, 1, 1..o)))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..18); # Alois P. Heinz, Feb 21 2025
-
b[o_, u_, t_] := b[o, u, t] =
If[u + o == 0, 1, If[t > 0, b[u + o, 0, 0], 0] + Sum[4^(u + j - 1)*
b[o - j, u + j - 1, Min[2, t + 1]], {j, If[t == 0, {1}, Range[o]]}]];
a[n_] := b[n, 0, 0];
Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Mar 15 2025, after Alois P. Heinz *)
-
/* q-Binomial coefficients: */
{C_q(n,k)=if(n
A381369
A(n,k) is the sum over all partitions of [n] of k^j for a partition with j inversions; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 5, 8, 1, 1, 2, 6, 15, 16, 1, 1, 2, 7, 28, 52, 32, 1, 1, 2, 8, 47, 204, 203, 64, 1, 1, 2, 9, 72, 628, 2344, 877, 128, 1, 1, 2, 10, 103, 1552, 17327, 43160, 4140, 256, 1, 1, 2, 11, 140, 3276, 84416, 1022983, 1291952, 21147, 512
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
2, 2, 2, 2, 2, 2, 2, ...
4, 5, 6, 7, 8, 9, 10, ...
8, 15, 28, 47, 72, 103, 140, ...
16, 52, 204, 628, 1552, 3276, 6172, ...
32, 203, 2344, 17327, 84416, 307867, 915848, ...
-
b:= proc(o, u, t, k) option remember;
`if`(u+o=0, 1, `if`(t>0, b(u+o, 0$2, k), 0)+add(k^(u+j-1)*
b(o-j, u+j-1, min(2, t+1), k), j=`if`(t=0, 1, 1..o)))
end:
A:= (n, k)-> b(n, 0$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
Unprotect[Power]; 0^0 = 1; Protect[Power];
b[o_, u_, t_, k_] := b[o, u, t, k] =
If[u + o == 0, 1, If[t > 0, b[u + o, 0, 0, k], 0] + Sum[k^(u + j - 1)*
b[o - j, u + j - 1, Min[2, t + 1], k], {j, If[t == 0, {1}, Range[o]]}]];
A[n_, k_] := b[n, 0, 0, k];
Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Mar 15 2025, after Alois P. Heinz *)
Original entry on oeis.org
1, 1, 1, 1, 4, 2, 1, 13, 26, 7, 1, 40, 260, 280, 47, 1, 121, 2420, 8470, 5687, 628
Offset: 0
First few rows of the triangle are:
1;
1, 1;
1, 4, 2;
1, 13, 26, 7;
1, 40, 260, 280, 47;
1, 121, 2420, 8470, 5687, 628;
...
Row 3 = (1, 13, 26, 7) = termwise product of (1, 13, 13, 1) and (1, 1, 2, 7); where (1, 13, 13, 1) = row 3 of triangle A022167 and (1, 1, 2, 7) = the first 4 terms of A125813, the eigensequence of A022167.
Showing 1-7 of 7 results.
Comments