A260670 Number T(n,k) of permutations of [n] with exactly k (possibly overlapping) occurrences of the generalized pattern 23-1; triangle T(n,k), n>=0, 0<=k<=A125811(n)-1, read by rows.
1, 1, 2, 5, 1, 15, 6, 3, 52, 32, 23, 10, 3, 203, 171, 152, 98, 62, 22, 11, 1, 877, 944, 984, 791, 624, 392, 240, 111, 55, 18, 4, 4140, 5444, 6460, 6082, 5513, 4302, 3328, 2141, 1393, 780, 432, 187, 88, 24, 6, 21147, 32919, 43626, 46508, 46880, 41979, 36774
Offset: 0
Examples
T(3,1) = 1: 231. T(4,1) = 6: 1342, 2314, 2413, 2431, 3241, 4231. T(4,2) = 3: 2341, 3412, 3421. T(5,2) = 23: 13452, 14523, 14532, 23415, 23514, 23541, 24351, 25341, 32451, 34125, 34152, 34215, 35124, 35142, 35214, 35412, 35421, 42351, 43512, 43521, 52341, 53412, 53421. T(5,3) = 10: 23451, 24513, 24531, 34251, 35241, 45123, 45132, 45213, 45312, 45321. T(5,4) = 3: 34512, 34521, 45231. Triangle T(n,k) begins: 0 : 1; 1 : 1; 2 : 2; 3 : 5, 1; 4 : 15, 6, 3; 5 : 52, 32, 23, 10, 3; 6 : 203, 171, 152, 98, 62, 22, 11, 1; 7 : 877, 944, 984, 791, 624, 392, 240, 111, 55, 18, 4;
Links
- Alois P. Heinz, Rows n = 0..50, flattened
- A. Claesson and T. Mansour, Counting occurrences of a pattern of type (1,2) or (2,1) in permutations, arXiv:math/0110036 [math.CO], 2001
Crossrefs
Programs
-
Maple
b:= proc(u, o) option remember; `if`(u+o=0, 1, add(b(u-j, o+j-1), j=1..u)+ add(expand(b(u+j-1, o-j)*x^u), j=1..o)) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n,0)): seq(T(n), n=0..10);
-
Mathematica
b[u_, o_] := b[u, o] = If[u+o == 0, 1, Sum[b[u-j, o+j-1], {j, 1, u}] + Sum[Expand[b[u+j-1, o-j]*x^u], {j, 1, o}]]; T[n_] := Function[p, Table[ Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jan 16 2017, after Alois P. Heinz *)
Formula
Sum_{k>0} k * T(n,k) = A001754(n).
Comments