cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A263776 Triangle read by rows: T(n,k) (n>=0, 0<=k<=A002620(n-1)) is the number of permutations of [n] with k nestings.

Original entry on oeis.org

1, 1, 2, 5, 1, 14, 8, 2, 42, 45, 25, 7, 1, 132, 220, 198, 112, 44, 12, 2, 429, 1001, 1274, 1092, 700, 352, 140, 42, 9, 1, 1430, 4368, 7280, 8400, 7460, 5392, 3262, 1664, 716, 256, 74, 16, 2, 4862, 18564, 38556, 56100, 63648, 59670, 47802, 33338, 20466, 11115
Offset: 0

Views

Author

Christian Stump, Oct 26 2015

Keywords

Comments

Row sums give A000142.
First column gives A000108.
Also the number of permutations of [n] with k crossings (see Corteel, Proposition 4).
Also the number of permutations of [n] with exactly k (possibly overlapping) occurrences of the generalized pattern 13-2 (alternatively: 2-13, 2-31, or 31-2). - Alois P. Heinz, Nov 14 2015

Examples

			Triangle begins:
0 :   1;
1 :   1;
2 :   2;
3 :   5,    1;
4 :  14,    8,    2;
5 :  42,   45,   25,    7,   1;
6 : 132,  220,  198,  112,  44,  12,   2;
7 : 429, 1001, 1274, 1092, 700, 352, 140, 42, 9, 1;
...
		

Crossrefs

Programs

  • Maple
    b:= proc(u, o) option remember;
          `if`(u+o=0, 1, add(b(u-j, o+j-1), j=1..u)+
           add(expand(b(u+j-1, o-j)*x^(j-1)), j=1..o))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Nov 14 2015
  • Mathematica
    b[u_, o_] := b[u, o] = If[u+o == 0, 1, Sum[b[u-j, o+j-1], {j, 1, u}] + Sum[Expand[b[u+j-1, o-j]*x^(j-1)], {j, 1, o}]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0]]; Table[ T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jan 31 2016, after Alois P. Heinz *)

Formula

Sum_{k>0} k * T(n,k) = A001754(n).
T(n,n) = A287328(n). - Alois P. Heinz, Aug 31 2017

Extensions

More terms from Alois P. Heinz, Oct 26 2015

A260665 Number T(n,k) of permutations of [n] with exactly k (possibly overlapping) occurrences of the generalized pattern 12-3; triangle T(n,k), n>=0, 0<=k<=(n-1)*(n-2)/2-[n=0], read by rows.

Original entry on oeis.org

1, 1, 2, 5, 1, 15, 7, 1, 1, 52, 39, 13, 12, 2, 1, 1, 203, 211, 112, 103, 41, 24, 17, 5, 2, 1, 1, 877, 1168, 843, 811, 492, 337, 238, 122, 68, 39, 28, 8, 5, 2, 1, 1, 4140, 6728, 6089, 6273, 4851, 3798, 2956, 1960, 1303, 859, 594, 314, 204, 110, 64, 43, 17, 8, 5, 2, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Nov 14 2015

Keywords

Comments

Patterns 1-23, 3-21, 32-1 give the same triangle.

Examples

			T(4,1) = 7: 1324, 1342, 2134, 2314, 2341, 3124, 4123.
T(4,2) = 1: 1243.
T(4,3) = 1: 1234.
T(5,3) = 12: 12534, 12543, 13245, 13425, 13452, 21345, 23145, 23415, 23451, 31245, 41235, 51234.
T(5,4) = 2: 12435, 12453.
T(5,5) = 1: 12354.
T(5,6) = 1: 12345.
Triangle T(n,k) begins:
0 :   1;
1 :   1;
2 :   2;
3 :   5,    1;
4 :  15,    7,   1,   1;
5 :  52,   39,  13,  12,   2,   1,   1;
6 : 203,  211, 112, 103,  41,  24,  17,   5,  2,  1,  1;
7 : 877, 1168, 843, 811, 492, 337, 238, 122, 68, 39, 28, 8, 5, 2, 1, 1;
		

Crossrefs

Programs

  • Maple
    b:= proc(u, o) option remember;
          `if`(u+o=0, 1, add(b(u-j, o+j-1), j=1..u)+
           add(expand(b(u+j-1, o-j)*x^(o-j)), j=1..o))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)):
    seq(T(n), n=0..10);
  • Mathematica
    b[u_, o_] := b[u, o] = If[u + o == 0, 1, Sum[b[u - j, o + j - 1], {j, 1, u}] + Sum[Expand[b[u + j - 1, o - j]*x^(o - j)], {j, 1, o}]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0] ]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jul 10 2017, after Alois P. Heinz *)

Formula

Sum_{k>0} k * T(n,k) = A001754(n).

A264460 Number of permutations of [n] with exactly one occurrence of the generalized pattern 23-1.

Original entry on oeis.org

1, 6, 32, 171, 944, 5444, 32919, 208816, 1388240, 9657929, 70187054, 531857288, 4194927585, 34379859346, 292303350268, 2574284790795, 23450837821836, 220681535036288, 2142618638738279, 21438586249394500, 220827871704427308, 2339281577294955745
Offset: 3

Views

Author

Alois P. Heinz, Nov 14 2015

Keywords

Examples

			a(3) = 1: 231.
a(4) = 6: 1342, 2314, 2413, 2431, 3241, 4231.
		

Crossrefs

Column k=1 of A260670.

Programs

  • Maple
    b:= proc(u, o) option remember; `if`(u+o=0, 1, add(
          b(u-j, o+j-1), j=1..u) +add(convert(series(
          b(u+j-1, o-j)*x^u, x, 2), polynom), j=1..o))
        end:
    a:= n-> coeff(b(n, 0), x, 1):
    seq(a(n), n=3..25);
  • Mathematica
    b[u_, o_] := b[u, o] = If[u+o == 0, 1, Sum[b[u-j, o+j-1], {j, 1, u}] + Sum[Series[b[u+j-1, o-j] x^u, {x, 0, 2}] // Normal, {j, 1, o}]];
    a[n_] := Coefficient[b[n, 0], x, 1];
    a /@ Range[3, 25] (* Jean-François Alcover, Sep 28 2020, after Maple *)

A264461 Number of permutations of [n] with exactly two (possibly overlapping) occurrences of the generalized pattern 23-1.

Original entry on oeis.org

3, 23, 152, 984, 6460, 43626, 304939, 2211467, 16649780, 130097338, 1054226016, 8850736900, 76901730751, 690749091147, 6406953787268, 61300205459232, 604367205789092, 6133919028981542, 64027105979768111, 686736004045762143, 7562191796264603160
Offset: 4

Views

Author

Alois P. Heinz, Nov 14 2015

Keywords

Examples

			a(4) = 3: 2341, 3412, 3421.
a(5) = 23: 13452, 14523, 14532, 23415, 23514, 23541, 24351, 25341, 32451, 34125, 34152, 34215, 35124, 35142, 35214, 35412, 35421, 42351, 43512, 43521, 52341, 53412, 53421.
		

Crossrefs

Column k=2 of A260670.

Programs

  • Maple
    b:= proc(u, o) option remember; `if`(u+o=0, 1, add(
          b(u-j, o+j-1), j=1..u) +add(convert(series(
          b(u+j-1, o-j)*x^u, x, 3), polynom), j=1..o))
        end:
    a:= n-> coeff(b(n, 0), x, 2):
    seq(a(n), n=4..25);
  • Mathematica
    b[u_, o_] := b[u, o] = If[u+o == 0, 1, Sum[b[u-j, o+j-1], {j, 1, u}] + Sum[Series[b[u+j-1, o-j] x^u, {x, 0, 3}] // Normal, {j, 1, o}]];
    a[n_] := Coefficient[b[n, 0], x, 2];
    a /@ Range[4, 25] (* Jean-François Alcover, Sep 28 2020, after Maple *)

A264462 Number of permutations of [n] with exactly three (possibly overlapping) occurrences of the generalized pattern 23-1.

Original entry on oeis.org

10, 98, 791, 6082, 46508, 360376, 2855580, 23244370, 194796665, 1682243510, 14973751272, 137345968648, 1297620307926, 12620234271634, 126265094967383, 1298634572382618, 13720327052477584, 148800093788609512, 1655374072150829472, 18877499531817214482
Offset: 5

Views

Author

Alois P. Heinz, Nov 14 2015

Keywords

Examples

			a(5) = 10: 23451, 24513, 24531, 34251, 35241, 45123, 45132, 45213, 45312, 45321.
		

Crossrefs

Column k=3 of A260670.

Programs

  • Maple
    b:= proc(u, o) option remember; `if`(u+o=0, 1, add(
          b(u-j, o+j-1), j=1..u) +add(convert(series(
          b(u+j-1, o-j)*x^u, x, 4), polynom), j=1..o))
        end:
    a:= n-> coeff(b(n, 0), x, 3):
    seq(a(n), n=5..25);

A264463 Number of permutations of [n] with exactly four (possibly overlapping) occurrences of the generalized pattern 23-1.

Original entry on oeis.org

3, 62, 624, 5513, 46880, 396545, 3388893, 29497132, 262619041, 2397130075, 22458202716, 216063700398, 2134707078315, 21655074753266, 225471830153938, 2408463527492433, 26380434283682048, 296130434080550183, 3404883834560222589, 40077202708717399396
Offset: 5

Views

Author

Alois P. Heinz, Nov 14 2015

Keywords

Examples

			a(5) = 3: 34512, 34521, 45231.
		

Crossrefs

Column k=4 of A260670.

Programs

  • Maple
    b:= proc(u, o) option remember; `if`(u+o=0, 1, add(
          b(u-j, o+j-1), j=1..u) +add(convert(series(
          b(u+j-1, o-j)*x^u, x, 5), polynom), j=1..o))
        end:
    a:= n->  coeff(b(n, 0), x, 4):
    seq(a(n), n=5..25);

A264464 Number of permutations of [n] with exactly five (possibly overlapping) occurrences of the generalized pattern 23-1.

Original entry on oeis.org

22, 392, 4302, 41979, 393476, 3652779, 34099448, 322746351, 3111556310, 30637025849, 308542096284, 3180677263083, 33574281993047, 362907367462521, 4016295885663247, 45496983534864142, 527373693673894161, 6252643277063017082, 75794122449729562363
Offset: 6

Views

Author

Alois P. Heinz, Nov 14 2015

Keywords

Examples

			a(6) = 22: 245613, 245631, 256341, 345261, 346251, 356124, 356142, 356214, 356412, 356421, 452361, 453612, 453621, 462351, 463512, 463521, 561342, 562314, 562413, 562431, 563241, 564231.
		

Crossrefs

Column k=5 of A260670.

Programs

  • Maple
    b:= proc(u, o) option remember; `if`(u+o=0, 1, add(
          b(u-j, o+j-1), j=1..u) +add(convert(series(
          b(u+j-1, o-j)*x^u, x, 6), polynom), j=1..o))
        end:
    a:= n-> coeff(b(n, 0), x, 5):
    seq(a(n), n=6..25);

A264465 Number of permutations of [n] with exactly six (possibly overlapping) occurrences of the generalized pattern 23-1.

Original entry on oeis.org

11, 240, 3328, 36774, 377610, 3775281, 37545239, 375714151, 3808210872, 39250117725, 412320359485, 4420852570619, 48416817503118, 541846406216437, 6197311080340307, 72436698579083259, 865110836456018947, 10554489471399030408, 131500190867301682844
Offset: 6

Views

Author

Alois P. Heinz, Nov 14 2015

Keywords

Examples

			a(6) = 11: 345612, 345621, 356241, 456123, 456132, 456213, 456312, 456321, 562341, 563412, 563421.
		

Crossrefs

Column k=6 of A260670.

Programs

  • Maple
    b:= proc(u, o) option remember; `if`(u+o=0, 1, add(
          b(u-j, o+j-1), j=1..u) +add(convert(series(
          b(u+j-1, o-j)*x^u, x, 7), polynom), j=1..o))
        end:
    a:= n-> coeff(b(n, 0), x, 6):
    seq(a(n), n=6..25);

A264466 Number of permutations of [n] with exactly seven (possibly overlapping) occurrences of the generalized pattern 23-1.

Original entry on oeis.org

1, 111, 2141, 29066, 336137, 3663730, 39037155, 414003430, 4414401391, 47606401475, 521147444815, 5804080039932, 65854473968668, 761861585833395, 8990938684395442, 108258685340444377, 1330041483208589743, 16671576238569453924, 213169773223813966680
Offset: 6

Views

Author

Alois P. Heinz, Nov 14 2015

Keywords

Examples

			a(6) = 1: 456231.
a(7) = 111: 1567342, 2456713, 2456731, ..., 6753412, 6753421, 7456231.
		

Crossrefs

Column k=7 of A260670.

Programs

  • Maple
    b:= proc(u, o) option remember; `if`(u+o=0, 1, add(
          b(u-j, o+j-1), j=1..u) +add(convert(series(
          b(u+j-1, o-j)*x^u, x, 8), polynom), j=1..o))
        end:
    a:= n-> coeff(b(n, 0), x, 7):
    seq(a(n), n=6..25);

A264467 Number of permutations of [n] with exactly eight (possibly overlapping) occurrences of the generalized pattern 23-1.

Original entry on oeis.org

55, 1393, 22180, 290341, 3443222, 39212955, 439762906, 4922646194, 55440198721, 631281758915, 7290146619344, 85550258610256, 1021466597564828, 12418915430929303, 153814790549535203, 1941191617618161308, 24964754218212162461, 327159226788279647296
Offset: 7

Views

Author

Alois P. Heinz, Nov 14 2015

Keywords

Examples

			a(7) = 55: 2567341, 3456712, 3456721, ..., 6745213, 6745312, 6745321.
		

Crossrefs

Column k=8 of A260670.

Programs

  • Maple
    b:= proc(u, o) option remember; `if`(u+o=0, 1, add(
          b(u-j, o+j-1), j=1..u) +add(convert(series(
          b(u+j-1, o-j)*x^u, x, 9), polynom), j=1..o))
        end:
    a:= n-> coeff(b(n, 0), x, 8):
    seq(a(n), n=7..25);
Showing 1-10 of 12 results. Next