A001754
Lah numbers: a(n) = n!*binomial(n-1,2)/6.
Original entry on oeis.org
0, 0, 1, 12, 120, 1200, 12600, 141120, 1693440, 21772800, 299376000, 4390848000, 68497228800, 1133317785600, 19833061248000, 366148823040000, 7113748561920000, 145120470663168000, 3101950060425216000, 69337707233034240000, 1617879835437465600000
Offset: 1
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
- John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Column m=3 of unsigned triangle
A111596.
-
[Factorial(n)*Binomial(n-1, 2)/6: n in [1..25]]; // Vincenzo Librandi, Oct 11 2011
-
[seq(n!*binomial(n-1,2)/6, n=1..40)];
-
Table[(n-2)*(n-1)*n!/12, {n, 21}] (* Arkadiusz Wesolowski, Nov 26 2012 *)
With[{nn=30},CoefficientList[Series[(x/(1-x))^3/6,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 04 2017 *)
-
[factorial(n-1)*binomial(n,3)/2 for n in (1..30)] # G. C. Greubel, May 10 2021
A263776
Triangle read by rows: T(n,k) (n>=0, 0<=k<=A002620(n-1)) is the number of permutations of [n] with k nestings.
Original entry on oeis.org
1, 1, 2, 5, 1, 14, 8, 2, 42, 45, 25, 7, 1, 132, 220, 198, 112, 44, 12, 2, 429, 1001, 1274, 1092, 700, 352, 140, 42, 9, 1, 1430, 4368, 7280, 8400, 7460, 5392, 3262, 1664, 716, 256, 74, 16, 2, 4862, 18564, 38556, 56100, 63648, 59670, 47802, 33338, 20466, 11115
Offset: 0
Triangle begins:
0 : 1;
1 : 1;
2 : 2;
3 : 5, 1;
4 : 14, 8, 2;
5 : 42, 45, 25, 7, 1;
6 : 132, 220, 198, 112, 44, 12, 2;
7 : 429, 1001, 1274, 1092, 700, 352, 140, 42, 9, 1;
...
- Alois P. Heinz, Rows n = 0..50, flattened
- A. Claesson and T. Mansour, Counting occurrences of a pattern of type (1,2) or (2,1) in permutations, arXiv:math/0110036 [math.CO], 2001.
- S. Corteel, Crossings and alignments of permutations, Adv. Appl. Math 38 (2007) 149-163.
- FindStat - Combinatorial Statistic Finder, The number of nestings of a permutation, The number of crossings of a permutation
- R. Parviainen, Lattice Path Enumeration of Permutations with k Occurrences of the Pattern 2-13, Journal of Integer Sequences, Vol. 9 (2006), Article 06.3.2.
- Lucas Sá and Antonio M. García-García, The Wishart-Sachdev-Ye-Kitaev model: Q-Laguerre spectral density and quantum chaos, arXiv:2104.07647 [hep-th], 2021.
Columns k=0-10 give:
A000108,
A002696,
A094218,
A094219,
A120812,
A120813,
A120814,
A120815,
A120816,
A264496,
A264497.
-
b:= proc(u, o) option remember;
`if`(u+o=0, 1, add(b(u-j, o+j-1), j=1..u)+
add(expand(b(u+j-1, o-j)*x^(j-1)), j=1..o))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)):
seq(T(n), n=0..10); # Alois P. Heinz, Nov 14 2015
-
b[u_, o_] := b[u, o] = If[u+o == 0, 1, Sum[b[u-j, o+j-1], {j, 1, u}] + Sum[Expand[b[u+j-1, o-j]*x^(j-1)], {j, 1, o}]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0]]; Table[ T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jan 31 2016, after Alois P. Heinz *)
A260670
Number T(n,k) of permutations of [n] with exactly k (possibly overlapping) occurrences of the generalized pattern 23-1; triangle T(n,k), n>=0, 0<=k<=A125811(n)-1, read by rows.
Original entry on oeis.org
1, 1, 2, 5, 1, 15, 6, 3, 52, 32, 23, 10, 3, 203, 171, 152, 98, 62, 22, 11, 1, 877, 944, 984, 791, 624, 392, 240, 111, 55, 18, 4, 4140, 5444, 6460, 6082, 5513, 4302, 3328, 2141, 1393, 780, 432, 187, 88, 24, 6, 21147, 32919, 43626, 46508, 46880, 41979, 36774
Offset: 0
T(3,1) = 1: 231.
T(4,1) = 6: 1342, 2314, 2413, 2431, 3241, 4231.
T(4,2) = 3: 2341, 3412, 3421.
T(5,2) = 23: 13452, 14523, 14532, 23415, 23514, 23541, 24351, 25341, 32451, 34125, 34152, 34215, 35124, 35142, 35214, 35412, 35421, 42351, 43512, 43521, 52341, 53412, 53421.
T(5,3) = 10: 23451, 24513, 24531, 34251, 35241, 45123, 45132, 45213, 45312, 45321.
T(5,4) = 3: 34512, 34521, 45231.
Triangle T(n,k) begins:
0 : 1;
1 : 1;
2 : 2;
3 : 5, 1;
4 : 15, 6, 3;
5 : 52, 32, 23, 10, 3;
6 : 203, 171, 152, 98, 62, 22, 11, 1;
7 : 877, 944, 984, 791, 624, 392, 240, 111, 55, 18, 4;
Columns k=0-10 give:
A000110,
A264460,
A264461,
A264462,
A264463,
A264464,
A264465,
A264466,
A264467,
A264468,
A264469.
-
b:= proc(u, o) option remember;
`if`(u+o=0, 1, add(b(u-j, o+j-1), j=1..u)+
add(expand(b(u+j-1, o-j)*x^u), j=1..o))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n,0)):
seq(T(n), n=0..10);
-
b[u_, o_] := b[u, o] = If[u+o == 0, 1, Sum[b[u-j, o+j-1], {j, 1, u}] + Sum[Expand[b[u+j-1, o-j]*x^u], {j, 1, o}]]; T[n_] := Function[p, Table[ Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jan 16 2017, after Alois P. Heinz *)
A092923
Number of permutations containing exactly one occurrence of the pattern #, with # one of {1-23, 3-21, 12-3, 32-1}.
Original entry on oeis.org
1, 7, 39, 211, 1168, 6728, 40561, 256297, 1696707, 11752973, 85047284, 641782220, 5041634549, 41160207335, 348664792199, 3059885806071, 27781291314396, 260599397789924, 2522492941426381, 25166308238897929, 258507111338795491, 2731176458973448817
Offset: 3
-
a[n_ /; n<3] = 0; a[n_] := a[n] = 2 a[n-1] + Sum[Binomial[n-2, k] (a[k+1] + BellB[k+1]), {k, 0, n-3}];
Table[a[n], {n, 3, 24}] (* Jean-François Alcover, Aug 19 2018 *)
-
a(n)=if(n<1,0,2*a(n-1)+sum(k=0,n-3,binomial(n-2,k)*(a(k+1)+polcoeff(serlaplace(exp(exp(x)-1)),k+1))))
A264451
Number of permutations of [n] with exactly two (possibly overlapping) occurrences of the generalized pattern 12-3.
Original entry on oeis.org
1, 13, 112, 843, 6089, 43887, 321357, 2411686, 18631631, 148490575, 1221894598, 10382648734, 91073271181, 824221683639, 7690752545310, 73932347642395, 731636916804531, 7447376286108705, 77913394499688645, 837113596053971008, 9229808681562243113
Offset: 4
a(4) = 1: 1243.
a(5) = 13: 13254, 13524, 13542, 14235, 21354, 23154, 23514, 23541, 24135, 31254, 34125, 41253, 51243.
-
b:= proc(u, o) option remember; `if`(u+o=0, 1, add(
b(u-j, o+j-1), j=1..u)+add(convert(series(
b(u+j-1, o-j)*x^(o-j), x, 3), polynom), j=1..o))
end:
a:= n-> coeff(b(n, 0), x, 2):
seq(a(n), n=4..25);
A264452
Number of permutations of [n] with exactly three (possibly overlapping) occurrences of the generalized pattern 12-3.
Original entry on oeis.org
1, 12, 103, 811, 6273, 48806, 386041, 3122069, 25900188, 220791812, 1935811756, 17461471292, 162038542377, 1546528485770, 15174625184321, 152994813139537, 1584120732683571, 16834244135840106, 183496533502593453, 2050337555698723711, 23470542944212951050
Offset: 4
a(4) = 1: 1234.
a(5) = 12: 12534, 12543, 13245, 13425, 13452, 21345, 23145, 23415, 23451, 31245, 41235, 51234.
-
b:= proc(u, o) option remember; `if`(u+o=0, 1, add(
b(u-j, o+j-1), j=1..u)+add(convert(series(
b(u+j-1, o-j)*x^(o-j), x, 4), polynom), j=1..o))
end:
a:= n-> coeff(b(n, 0), x, 3):
seq(a(n), n=4..25);
A264453
Number of permutations of [n] with exactly four (possibly overlapping) occurrences of the generalized pattern 12-3.
Original entry on oeis.org
2, 41, 492, 4851, 44291, 394154, 3502159, 31450283, 287335089, 2680535274, 25586566853, 250169461829, 2506738712869, 25745302689807, 270994937686871, 2922760610595872, 32288420619988347, 365214362676429903, 4227719744153328064, 50063651356822568135
Offset: 5
A264454
Number of permutations of [n] with exactly five (possibly overlapping) occurrences of the generalized pattern 12-3.
Original entry on oeis.org
1, 24, 337, 3798, 38795, 379611, 3659389, 35291284, 343556139, 3394140548, 34141603945, 350367304972, 3672490264985, 39344027488644, 430933818393770, 4825995839698429, 55254816421477438, 646659542446548212, 7733703865241542989, 94486241595833611364
Offset: 5
A264455
Number of permutations of [n] with exactly six (possibly overlapping) occurrences of the generalized pattern 12-3.
Original entry on oeis.org
1, 17, 238, 2956, 33343, 355182, 3681762, 37839385, 389940538, 4056942189, 42796503464, 458995025669, 5013561835833, 55832699192796, 634322118799677, 7354538207075076, 87032355679553323, 1051183375285792257, 12956782873283747998, 162950022525866642259
Offset: 5
a(5) = 1: 12345.
a(6) = 17: 124365, 124635, 124653, 125346, 132456, 134256, 134526, 134562, 213456, 231456, 234156, 234516, 234561, 312456, 412356, 512346, 612345.
-
b:= proc(u, o) option remember; `if`(u+o=0, 1, add(
b(u-j, o+j-1), j=1..u)+add(convert(series(
b(u+j-1, o-j)*x^(o-j), x, 7), polynom), j=1..o))
end:
a:= n-> coeff(b(n, 0), x, 6):
seq(a(n), n=5..25);
A264456
Number of permutations of [n] with exactly seven (possibly overlapping) occurrences of the generalized pattern 12-3.
Original entry on oeis.org
5, 122, 1960, 25922, 308912, 3488684, 38438284, 420224213, 4604712333, 50891058160, 569534211553, 6470640729869, 74755213239764, 879145839345147, 10531462769901577, 128554339635477023, 1599307831822386125, 20278763016658278490, 262052769447634167173
Offset: 6
a(6) = 5: 123645, 123654, 124356, 124536, 124563.
a(7) = 122: 1253746, 1253764, 1254376, ..., 7124356, 7124536, 7124563.
-
b:= proc(u, o) option remember; `if`(u+o=0, 1, add(
b(u-j, o+j-1), j=1..u)+add(convert(series(
b(u+j-1, o-j)*x^(o-j), x, 8), polynom), j=1..o))
end:
a:= n-> coeff(b(n, 0), x, 7):
seq(a(n), n=6..25);
Showing 1-10 of 13 results.
Comments