cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A002696 Binomial coefficients C(2n,n-3).

Original entry on oeis.org

1, 8, 45, 220, 1001, 4368, 18564, 77520, 319770, 1307504, 5311735, 21474180, 86493225, 347373600, 1391975640, 5567902560, 22239974430, 88732378800, 353697121050, 1408831480056, 5608233007146, 22314239266528, 88749815264600, 352870329957600, 1402659561581460
Offset: 3

Views

Author

Keywords

Comments

Number of lattice paths from (0,0) to (n,n) with steps E=(1,0) and N=(0,1) which touch or cross the line x-y=3. - Herbert Kociemba, May 23 2004

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
  • C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 517.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Diagonal 7 of triangle A100257.
Column k=1 of A263776.
Cf. A001622.
Cf. binomial(2*n+m, n): A000984 (m = 0), A001700 (m = 1), A001791 (m = 2), A002054 (m = 3), A002694 (m = 4), A003516 (m = 5), A030053 - A030056, A004310 - A004318.

Programs

Formula

G.f.: (1-sqrt(1-4*z))^6/(64*z^3*sqrt(1-4*z)). - Emeric Deutsch, Jan 28 2004
a(n) = Sum_{k=0..n} C(n, k)*C(n, k+3). - Hermann Stamm-Wilbrandt, Aug 17 2015
From Robert Israel, Aug 19 2015: (Start)
(n-2)*(n+4)*a(n+1) = (2*n+2)*(2*n+1)*a(n).
E.g.f.: I_3(2*x) * exp(2*x) where I_3 is a modified Bessel function. (End)
From Amiram Eldar, Aug 27 2022: (Start)
Sum_{n>=3} 1/a(n) = 3/4 + 2*Pi/(9*sqrt(3)).
Sum_{n>=3} (-1)^(n+1)/a(n) = 444*log(phi)/(5*sqrt(5)) - 1093/60, where phi is the golden ratio (A001622). (End)
G.f.: 2F1([7/2,4],[7],4*x). - Karol A. Penson, Apr 24 2024
From Peter Bala, Oct 13 2024: (Start)
a(n) = Integral_{x = 0..4} x^n * w(x) dx, where the weight function w(x) = 1/(2*Pi) * (x^3 - 6*x^2 + 9*x - 2)/sqrt(x*(4 - x)).
G.f: x^3 * B(x) * C(x)^6, where B(x) = 1/sqrt(1 - 4*x) is the g.f. of the central binomial coefficients A000984 and C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. (End)

Extensions

More terms from Emeric Deutsch, Feb 18 2004

A260665 Number T(n,k) of permutations of [n] with exactly k (possibly overlapping) occurrences of the generalized pattern 12-3; triangle T(n,k), n>=0, 0<=k<=(n-1)*(n-2)/2-[n=0], read by rows.

Original entry on oeis.org

1, 1, 2, 5, 1, 15, 7, 1, 1, 52, 39, 13, 12, 2, 1, 1, 203, 211, 112, 103, 41, 24, 17, 5, 2, 1, 1, 877, 1168, 843, 811, 492, 337, 238, 122, 68, 39, 28, 8, 5, 2, 1, 1, 4140, 6728, 6089, 6273, 4851, 3798, 2956, 1960, 1303, 859, 594, 314, 204, 110, 64, 43, 17, 8, 5, 2, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Nov 14 2015

Keywords

Comments

Patterns 1-23, 3-21, 32-1 give the same triangle.

Examples

			T(4,1) = 7: 1324, 1342, 2134, 2314, 2341, 3124, 4123.
T(4,2) = 1: 1243.
T(4,3) = 1: 1234.
T(5,3) = 12: 12534, 12543, 13245, 13425, 13452, 21345, 23145, 23415, 23451, 31245, 41235, 51234.
T(5,4) = 2: 12435, 12453.
T(5,5) = 1: 12354.
T(5,6) = 1: 12345.
Triangle T(n,k) begins:
0 :   1;
1 :   1;
2 :   2;
3 :   5,    1;
4 :  15,    7,   1,   1;
5 :  52,   39,  13,  12,   2,   1,   1;
6 : 203,  211, 112, 103,  41,  24,  17,   5,  2,  1,  1;
7 : 877, 1168, 843, 811, 492, 337, 238, 122, 68, 39, 28, 8, 5, 2, 1, 1;
		

Crossrefs

Programs

  • Maple
    b:= proc(u, o) option remember;
          `if`(u+o=0, 1, add(b(u-j, o+j-1), j=1..u)+
           add(expand(b(u+j-1, o-j)*x^(o-j)), j=1..o))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)):
    seq(T(n), n=0..10);
  • Mathematica
    b[u_, o_] := b[u, o] = If[u + o == 0, 1, Sum[b[u - j, o + j - 1], {j, 1, u}] + Sum[Expand[b[u + j - 1, o - j]*x^(o - j)], {j, 1, o}]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0] ]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jul 10 2017, after Alois P. Heinz *)

Formula

Sum_{k>0} k * T(n,k) = A001754(n).

A260670 Number T(n,k) of permutations of [n] with exactly k (possibly overlapping) occurrences of the generalized pattern 23-1; triangle T(n,k), n>=0, 0<=k<=A125811(n)-1, read by rows.

Original entry on oeis.org

1, 1, 2, 5, 1, 15, 6, 3, 52, 32, 23, 10, 3, 203, 171, 152, 98, 62, 22, 11, 1, 877, 944, 984, 791, 624, 392, 240, 111, 55, 18, 4, 4140, 5444, 6460, 6082, 5513, 4302, 3328, 2141, 1393, 780, 432, 187, 88, 24, 6, 21147, 32919, 43626, 46508, 46880, 41979, 36774
Offset: 0

Views

Author

Alois P. Heinz, Nov 14 2015

Keywords

Comments

Patterns 1-32, 3-12, 21-3 give the same sequence.

Examples

			T(3,1) = 1: 231.
T(4,1) = 6: 1342, 2314, 2413, 2431, 3241, 4231.
T(4,2) = 3: 2341, 3412, 3421.
T(5,2) = 23: 13452, 14523, 14532, 23415, 23514, 23541, 24351, 25341, 32451, 34125, 34152, 34215, 35124, 35142, 35214, 35412, 35421, 42351, 43512, 43521, 52341, 53412, 53421.
T(5,3) = 10: 23451, 24513, 24531, 34251, 35241, 45123, 45132, 45213, 45312, 45321.
T(5,4) = 3: 34512, 34521, 45231.
Triangle T(n,k) begins:
0 :   1;
1 :   1;
2 :   2;
3 :   5,   1;
4 :  15,   6,   3;
5 :  52,  32,  23,  10,   3;
6 : 203, 171, 152,  98,  62,  22,  11,   1;
7 : 877, 944, 984, 791, 624, 392, 240, 111, 55, 18, 4;
		

Crossrefs

Programs

  • Maple
    b:= proc(u, o) option remember;
         `if`(u+o=0, 1, add(b(u-j, o+j-1), j=1..u)+
           add(expand(b(u+j-1, o-j)*x^u), j=1..o))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n,0)):
    seq(T(n), n=0..10);
  • Mathematica
    b[u_, o_] := b[u, o] = If[u+o == 0, 1, Sum[b[u-j, o+j-1], {j, 1, u}] + Sum[Expand[b[u+j-1, o-j]*x^u], {j, 1, o}]]; T[n_] := Function[p, Table[ Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jan 16 2017, after Alois P. Heinz *)

Formula

Sum_{k>0} k * T(n,k) = A001754(n).

A094218 Number of permutations of length n with exactly 2 occurrences of the pattern 2-13.

Original entry on oeis.org

0, 0, 0, 2, 25, 198, 1274, 7280, 38556, 193800, 937992, 4412826, 20309575, 91861770, 409704750, 1806342720, 7887861960, 34166674800, 146977222320, 628521016500, 2673950235138, 11324837666604, 47773836727540, 200828153398752
Offset: 1

Views

Author

Benoit Cloitre, May 27 2004

Keywords

References

  • R. Lie, Permutations and Patterns, Master's Thesis, Goeteborg, Sweden: Chalmers University of Technology, 2004.

Crossrefs

Column k=2 of A263776.

Programs

  • Magma
    [n*Binomial(2*n,n-4)/2: n in [1..30]]; // Vincenzo Librandi, Aug 20 2015
  • Mathematica
    Table[n Binomial[2 n, n - 4]/2, {n, 30}] (* Vincenzo Librandi, Aug 20 2015 *)
  • PARI
    a(n)=n*binomial(2*n,n-4)/2
    

Formula

a(n) = n*binomial(2*n,n-4)/2.
From Amiram Eldar, May 04 2025: (Start)
Sum_{n>=4} 1/a(n) = 1147/45 - 34*Pi/(3*sqrt(3)) - 4*Pi^2/9.
Sum_{n>=4} (-1)^n/a(n) = 16*log(phi)^2 + 1588*log(phi)/(3*sqrt(5)) - 5272/45, where phi is the golden ratio (A001622). (End)

A094219 Number of permutations of length n with exactly 3 occurrences of the pattern 2-13.

Original entry on oeis.org

0, 0, 0, 0, 7, 112, 1092, 8400, 56100, 341088, 1939938, 10498488, 54679625, 276276000, 1362040680, 6580248480, 31256180280, 146350008000, 676868787000, 3097351569312, 14042319855102, 63144549413792, 281895309883000
Offset: 1

Views

Author

Benoit Cloitre, May 27 2004

Keywords

References

  • R. Lie, Permutations and Patterns, Master's Thesis, Goeteborg, Sweden: Chalmers University of Technology, 2004.

Crossrefs

Column k=3 of A263776.

Programs

  • Magma
    [(1/3)*Binomial(n+2,2)*Binomial(2*n,n-5): n in [1..30]]; // Vincenzo Librandi, Aug 20 2015
  • Mathematica
    Table[Binomial[n + 2, 2] Binomial[2 n, n - 5]/3, {n, 1, 30}] (* Vincenzo Librandi, Aug 20 2015 *)
  • PARI
    a(n)=1/3*binomial(n+2,2)*binomial(2*n,n-5)
    

Formula

a(n) = (1/3)*binomial(n+2,2)*binomial(2*n,n-5).
G.f.: (-7*x^2+8*x-2-(4*x^7+14*x^6+84*x^5-350*x^4+350*x^3-147*x^2+28*x-2) /(1-4*x)^(5/2)) /(2*x^5). - Mark van Hoeij, Apr 30 2013
From Amiram Eldar, May 04 2025: (Start)
Sum_{n>=5} 1/a(n) = sqrt(3)*Pi/2 - 719/280.
Sum_{n>=5} (-1)^(n+1)/a(n) = 129*sqrt(5)*log(phi) - 194141/1400, where phi is the golden ratio (A001622). (End)

A291722 Number T(n,k) of permutations p of [n] such that in 0p the sum of all jumps equals k + n; triangle T(n,k), n >= 0, 0 <= k <= n*(n-1)/2, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 6, 6, 5, 4, 1, 1, 1, 10, 20, 20, 26, 15, 15, 6, 5, 1, 1, 1, 15, 50, 70, 105, 106, 104, 90, 65, 51, 27, 21, 7, 6, 1, 1, 1, 21, 105, 210, 350, 497, 554, 644, 567, 574, 420, 386, 238, 203, 105, 85, 35, 28, 8, 7, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Aug 30 2017

Keywords

Comments

An up-jump j occurs at position i in p if p_{i} > p_{i-1} and j is the index of p_i in the increasingly sorted list of those elements in {p_{i}, ..., p_{n}} that are larger than p_{i-1}. A down-jump j occurs at position i in p if p_{i} < p_{i-1} and j is the index of p_i in the decreasingly sorted list of those elements in {p_{i}, ..., p_{n}} that are smaller than p_{i-1}. First index in the lists is 1 here.
From David B. Wilson, Dec 14 2018: (Start)
T(n,k) equals the number of permutations p of [n] such that twice the sum of the leftward-down-jumps of p plus the number of descents of p equals k.
T(n,k) equals the number of cover-inclusive Dyck tilings whose lower boundary is the zig-zag path of order n (UD)^n, and which have k tiles.
A leftward-down-jump j occurs at position i in p if p_{i} > p_{i+1} and there are j positions k for which k p_k > p_{i+1}.
Cover-inclusive Dyck tilings are defined in the Kenyon and Wilson link below. (End)

Examples

			T(4,0) = 1: 1234.
T(4,1) = 6: 1243, 1324, 1342, 2134, 2314, 2341.
T(4,2) = 6: 1432, 2143, 2431, 3214, 3241, 3421.
T(4,3) = 5: 1423, 2413, 3124, 3412, 4321.
T(4,4) = 4: 3142, 4213, 4231, 4312.
T(4,5) = 1: 4123.
T(4,6) = 1: 4132.
T(5,5) = 15: 15234, 25134, 31542, 35124, 41235, 42153, 42531, 43152, 45123, 53214, 53241, 53421, 54213, 54231, 54312.
Triangle T(n,k) begins:
  1;
  1;
  1,  1;
  1,  3,  1,  1;
  1,  6,  6,  5,   4,   1,   1;
  1, 10, 20, 20,  26,  15,  15,  6,  5,  1,  1;
  1, 15, 50, 70, 105, 106, 104, 90, 65, 51, 27, 21, 7, 6, 1, 1;
		

Crossrefs

Columns k=0-3 give: A000012, A000217(n-1) for n>0, A002415(n-1) for n>0, A291288(n-3) for n>0.
Row sums give A000142.
T(n,n) gives A289489.

Programs

  • Maple
    b:= proc(u, o) option remember; expand(`if`(u+o=0, 1,
          add(b(u-j, o+j-1)*x^(j-1), j=1..u)+
          add(b(u+j-1, o-j)*x^(j-1), j=1..o)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(0, n)):
    seq(T(n), n=0..10);
  • Mathematica
    (* Generating function for tiles for Dyck tilings above the zigzag path of order n *)
    (* Computed by looking at descents in the insertion sequence for the Dyck-tiling-ribbon bijection, described in the Kim-Meszaros-Panova-Wilson reference *)
    (* Since it's above the zigzag, all insertion positions are even *)
    (* When the second argument is specified, refines by position of last insertion *)
    tilegen[n_, sn_] := tilegen[n, sn] = If[n == 0 || n == 1, 1,
        Sum[tilegen[n - 1, j] If[j >= sn, t^(j - sn + 1), 1] //
          Expand, {j, 0, 2 (n - 2), 2}]
        ];
    tilegen[n_] := tilegen[n + 1, 2 n];
    T[n_, k_] := Coefficient[tilegen[n], t, k]; (* David B. Wilson, Dec 14 2018 *)

Formula

Sum_{k>=0} k * T(n,k) = A005990(n).

A120812 Number of permutations of length n with exactly 4 occurrences of the pattern 2-13.

Original entry on oeis.org

1, 44, 700, 7460, 63648, 470934, 3155691, 19660630, 115855025, 653392740, 3556757490, 18805317960, 97034823600, 490465092600, 2435567286708, 11910569958216, 57470522059594, 274051266477560, 1293219035408080
Offset: 5

Author

Robert Parviainen (robertp(AT)ms.unimelb.edu.au), Jul 05 2006

Keywords

References

  • R. Parviainen, Lattice path enumeration of permutations with k occurrences of the pattern 2-13, preprint, 2006.
  • Robert Parviainen, Lattice Path Enumeration of Permutations with k Occurrences of the Pattern 2-13, Journal of Integer Sequences, Vol. 9 (2006), Article 06.3.2.

Crossrefs

Column k=4 of A263776.

Formula

a(n) = (-36 - 100 m - 13 m^2 + 4 m^3 + m^4)/(24(m + 6))Binomial[2m, m - 5]; generating function = x^5 C^11 (5 - 118C + 259C^2 - 240C^3 + 142C^4 - 62C^5 + 17C^6 - 2 C^7)/(2-C)^7, where C=(1-Sqrt[1-4x])/(2x) is the Catalan function.

A120816 Number of permutations of length n with exactly 8 occurrences of the pattern 2-13.

Original entry on oeis.org

9, 716, 20466, 365996, 4939341, 55098294, 535240680, 4680045630, 37665984798, 283492037268, 2018852205700, 13724440760376, 89682252682256, 566388685336800, 3472428372731880, 20740959695100150, 121059468257664984
Offset: 7

Author

Robert Parviainen (robertp(AT)ms.unimelb.edu.au), Jul 06 2006

Keywords

References

  • R. Parviainen, Lattice path enumeration of permutations with k occurrences of the pattern 2-13, preprint, 2006.
  • Robert Parviainen, Lattice Path Enumeration of Permutations with k Occurrences of the Pattern 2-13, Journal of Integer Sequences, Vol. 9 (2006), Article 06.3.2.

Crossrefs

Column k=8 of A263776.

Formula

a(n) = (-7983360 - 12956832n + 10475400n^2 + 3647724n^3 - 416326n^4 - 249417n^5 - 19971n^6 + 2646n^7 + 576n^8 + 39n^9 + n^10)/(40320(n+8)(n+9)(n+10))Binomial[2n, n-7]; generating function = x^7 C^15(29 - 65536C + 499576C^2 - 1679496C^3 + 3298054C^4 - 4270444C^5 + 3911698C^6 - 2671744C^7 + 1439239C^8 - 659504C^9 + 279446C^10 - 112922C^11 + 41165C^12 - 12362C^13 + 2816C^14 - 448C^15 + 44C^16 - 2C^17)/(2-C)^15, where C=(1-Sqrt[1-4x])/(2x) is the Catalan function.

A120813 Number of permutations of length n with exactly 5 occurrences of the pattern 2-13.

Original entry on oeis.org

0, 0, 0, 0, 0, 12, 352, 5392, 59670, 541044, 4285127, 30772896, 205200710, 1291195620, 7754735430, 44827592160, 251003101440, 1368033658992, 7285815623268, 38033923266368, 195107105534280, 985573624414808, 4911044001390648
Offset: 1

Author

Robert Parviainen (robertp(AT)ms.unimelb.edu.au), Jul 06 2006, entries corrected Feb 08 2008

Keywords

References

  • R. Parviainen, Lattice path enumeration of permutations with k occurrences of the pattern 2-13, preprint, 2006.
  • Robert Parviainen, Lattice Path Enumeration of Permutations with k Occurrences of the Pattern 2-13, Journal of Integer Sequences, Vol. 9 (2006), Article 06.3.2.

Crossrefs

Formula

a(n) = ((n+4)(-108 - 192 n +3 n^2 + 8 n^3 + n^4))/(120(n + 7))binomial[2n, n - 6]; generating function = x^6 C^13 (-14 - 540C + 1519C^2 - 1517C^3 + 616C^4 + 70C^5 - 199C^6 + 97C^7 - 22C^8 + 2C^9)/(2-C)^9, where C=(1-Sqrt[1-4x])/(2x) is the Catalan function.

A120814 Number of permutations of length n with exactly 6 occurrences of the pattern 2-13.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 140, 3262, 47802, 535990, 5038418, 41781432, 315447990, 2214289350, 14664659100, 92612930280, 562220244768, 3301016862024, 18836205435208, 104862661271840, 571336322754792, 3054404571541092, 16056744308319000
Offset: 1

Author

Robert Parviainen (robertp(AT)ms.unimelb.edu.au), Jul 06 2006

Keywords

References

  • R. Parviainen, Lattice path enumeration of permutations with k occurrences of the pattern 2-13, preprint, 2006.
  • Robert Parviainen, Lattice Path Enumeration of Permutations with k Occurrences of the Pattern 2-13, Journal of Integer Sequences, Vol. 9 (2006), Article 06.3.2.

Crossrefs

Formula

a(n) = (20160 + 44448n + 548n^2 - 4196n^3 - 565n^4 + 67n^5 + 17n^6 + n^7)/(720(n+7)(n+6))binomial[2n, n-6]; generating function = x^6 C^13 (-42 + 4054C - 18354C^2 + 36038C^3 - 40660C^4 + 30080C^5 - 16090C^6 + 6914C^7 - 2604C^8 + 840C^9 - 202C^10 + 30C^11 - 2C^12)/(2-C)^11, where C=(1-Sqrt[1-4x])/(2x) is the Catalan function.
Showing 1-10 of 14 results. Next