A002696
Binomial coefficients C(2n,n-3).
Original entry on oeis.org
1, 8, 45, 220, 1001, 4368, 18564, 77520, 319770, 1307504, 5311735, 21474180, 86493225, 347373600, 1391975640, 5567902560, 22239974430, 88732378800, 353697121050, 1408831480056, 5608233007146, 22314239266528, 88749815264600, 352870329957600, 1402659561581460
Offset: 3
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
- C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 517.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Robert Israel, Table of n, a(n) for n = 3..1497
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- A. Claesson and T. Mansour, Counting patterns of type (1,2) or (2,1), arXiv:math/0110036 [math.CO], 2001.
- Milan Janjic, Two Enumerative Functions
- C. Lanczos, Applied Analysis (Annotated scans of selected pages)
- Toufik Mansour and Mark Shattuck, Counting occurrences of subword patterns in non-crossing partitions, Art Disc. Appl. Math. (2022).
- R. Parviainen, Lattice Path Enumeration of Permutations with k Occurrences of the Pattern 2-13, Journal of Integer Sequences, Vol. 9 (2006), Article 06.3.2.
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
- Hermann Stamm-Wilbrandt, Compute C(2n, n-k) based on C(n,...) animation
- Daniel W. Stasiuk, An Enumeration Problem for Sequences of n-ary Trees Arising from Algebraic Operads, Master's Thesis, University of Saskatchewan-Saskatoon (2018).
-
List([3..30], n-> Binomial(2*n, n-3)) # G. C. Greubel, Mar 21 2019
-
[ Binomial(2*n,n-3): n in [3..30] ]; // Vincenzo Librandi, Apr 13 2011
-
A002696:=n->binomial(2*n,n-3): seq(A002696(n), n=3..30); # Wesley Ivan Hurt, Aug 19 2015
-
CoefficientList[Series[64/(((Sqrt[1-4x] +1)^6)*Sqrt[1-4x]), {x,0,30}], x] (* Robert G. Wilson v, Aug 08 2011 *)
-
a(n)=binomial(n+n,n-3) \\ Charles R Greathouse IV, Aug 08 2011
-
[binomial(2*n, n-3) for n in (3..30)] # G. C. Greubel, Mar 21 2019
A260665
Number T(n,k) of permutations of [n] with exactly k (possibly overlapping) occurrences of the generalized pattern 12-3; triangle T(n,k), n>=0, 0<=k<=(n-1)*(n-2)/2-[n=0], read by rows.
Original entry on oeis.org
1, 1, 2, 5, 1, 15, 7, 1, 1, 52, 39, 13, 12, 2, 1, 1, 203, 211, 112, 103, 41, 24, 17, 5, 2, 1, 1, 877, 1168, 843, 811, 492, 337, 238, 122, 68, 39, 28, 8, 5, 2, 1, 1, 4140, 6728, 6089, 6273, 4851, 3798, 2956, 1960, 1303, 859, 594, 314, 204, 110, 64, 43, 17, 8, 5, 2, 1, 1
Offset: 0
T(4,1) = 7: 1324, 1342, 2134, 2314, 2341, 3124, 4123.
T(4,2) = 1: 1243.
T(4,3) = 1: 1234.
T(5,3) = 12: 12534, 12543, 13245, 13425, 13452, 21345, 23145, 23415, 23451, 31245, 41235, 51234.
T(5,4) = 2: 12435, 12453.
T(5,5) = 1: 12354.
T(5,6) = 1: 12345.
Triangle T(n,k) begins:
0 : 1;
1 : 1;
2 : 2;
3 : 5, 1;
4 : 15, 7, 1, 1;
5 : 52, 39, 13, 12, 2, 1, 1;
6 : 203, 211, 112, 103, 41, 24, 17, 5, 2, 1, 1;
7 : 877, 1168, 843, 811, 492, 337, 238, 122, 68, 39, 28, 8, 5, 2, 1, 1;
Columns k=0-10 give:
A000110,
A092923,
A264451,
A264452,
A264453,
A264454,
A264455,
A264456,
A264457,
A264458,
A264459.
-
b:= proc(u, o) option remember;
`if`(u+o=0, 1, add(b(u-j, o+j-1), j=1..u)+
add(expand(b(u+j-1, o-j)*x^(o-j)), j=1..o))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)):
seq(T(n), n=0..10);
-
b[u_, o_] := b[u, o] = If[u + o == 0, 1, Sum[b[u - j, o + j - 1], {j, 1, u}] + Sum[Expand[b[u + j - 1, o - j]*x^(o - j)], {j, 1, o}]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0] ]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jul 10 2017, after Alois P. Heinz *)
A260670
Number T(n,k) of permutations of [n] with exactly k (possibly overlapping) occurrences of the generalized pattern 23-1; triangle T(n,k), n>=0, 0<=k<=A125811(n)-1, read by rows.
Original entry on oeis.org
1, 1, 2, 5, 1, 15, 6, 3, 52, 32, 23, 10, 3, 203, 171, 152, 98, 62, 22, 11, 1, 877, 944, 984, 791, 624, 392, 240, 111, 55, 18, 4, 4140, 5444, 6460, 6082, 5513, 4302, 3328, 2141, 1393, 780, 432, 187, 88, 24, 6, 21147, 32919, 43626, 46508, 46880, 41979, 36774
Offset: 0
T(3,1) = 1: 231.
T(4,1) = 6: 1342, 2314, 2413, 2431, 3241, 4231.
T(4,2) = 3: 2341, 3412, 3421.
T(5,2) = 23: 13452, 14523, 14532, 23415, 23514, 23541, 24351, 25341, 32451, 34125, 34152, 34215, 35124, 35142, 35214, 35412, 35421, 42351, 43512, 43521, 52341, 53412, 53421.
T(5,3) = 10: 23451, 24513, 24531, 34251, 35241, 45123, 45132, 45213, 45312, 45321.
T(5,4) = 3: 34512, 34521, 45231.
Triangle T(n,k) begins:
0 : 1;
1 : 1;
2 : 2;
3 : 5, 1;
4 : 15, 6, 3;
5 : 52, 32, 23, 10, 3;
6 : 203, 171, 152, 98, 62, 22, 11, 1;
7 : 877, 944, 984, 791, 624, 392, 240, 111, 55, 18, 4;
Columns k=0-10 give:
A000110,
A264460,
A264461,
A264462,
A264463,
A264464,
A264465,
A264466,
A264467,
A264468,
A264469.
-
b:= proc(u, o) option remember;
`if`(u+o=0, 1, add(b(u-j, o+j-1), j=1..u)+
add(expand(b(u+j-1, o-j)*x^u), j=1..o))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n,0)):
seq(T(n), n=0..10);
-
b[u_, o_] := b[u, o] = If[u+o == 0, 1, Sum[b[u-j, o+j-1], {j, 1, u}] + Sum[Expand[b[u+j-1, o-j]*x^u], {j, 1, o}]]; T[n_] := Function[p, Table[ Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jan 16 2017, after Alois P. Heinz *)
A094218
Number of permutations of length n with exactly 2 occurrences of the pattern 2-13.
Original entry on oeis.org
0, 0, 0, 2, 25, 198, 1274, 7280, 38556, 193800, 937992, 4412826, 20309575, 91861770, 409704750, 1806342720, 7887861960, 34166674800, 146977222320, 628521016500, 2673950235138, 11324837666604, 47773836727540, 200828153398752
Offset: 1
- R. Lie, Permutations and Patterns, Master's Thesis, Goeteborg, Sweden: Chalmers University of Technology, 2004.
-
[n*Binomial(2*n,n-4)/2: n in [1..30]]; // Vincenzo Librandi, Aug 20 2015
-
Table[n Binomial[2 n, n - 4]/2, {n, 30}] (* Vincenzo Librandi, Aug 20 2015 *)
-
a(n)=n*binomial(2*n,n-4)/2
A094219
Number of permutations of length n with exactly 3 occurrences of the pattern 2-13.
Original entry on oeis.org
0, 0, 0, 0, 7, 112, 1092, 8400, 56100, 341088, 1939938, 10498488, 54679625, 276276000, 1362040680, 6580248480, 31256180280, 146350008000, 676868787000, 3097351569312, 14042319855102, 63144549413792, 281895309883000
Offset: 1
- R. Lie, Permutations and Patterns, Master's Thesis, Goeteborg, Sweden: Chalmers University of Technology, 2004.
-
[(1/3)*Binomial(n+2,2)*Binomial(2*n,n-5): n in [1..30]]; // Vincenzo Librandi, Aug 20 2015
-
Table[Binomial[n + 2, 2] Binomial[2 n, n - 5]/3, {n, 1, 30}] (* Vincenzo Librandi, Aug 20 2015 *)
-
a(n)=1/3*binomial(n+2,2)*binomial(2*n,n-5)
A291722
Number T(n,k) of permutations p of [n] such that in 0p the sum of all jumps equals k + n; triangle T(n,k), n >= 0, 0 <= k <= n*(n-1)/2, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 1, 1, 1, 6, 6, 5, 4, 1, 1, 1, 10, 20, 20, 26, 15, 15, 6, 5, 1, 1, 1, 15, 50, 70, 105, 106, 104, 90, 65, 51, 27, 21, 7, 6, 1, 1, 1, 21, 105, 210, 350, 497, 554, 644, 567, 574, 420, 386, 238, 203, 105, 85, 35, 28, 8, 7, 1, 1
Offset: 0
T(4,0) = 1: 1234.
T(4,1) = 6: 1243, 1324, 1342, 2134, 2314, 2341.
T(4,2) = 6: 1432, 2143, 2431, 3214, 3241, 3421.
T(4,3) = 5: 1423, 2413, 3124, 3412, 4321.
T(4,4) = 4: 3142, 4213, 4231, 4312.
T(4,5) = 1: 4123.
T(4,6) = 1: 4132.
T(5,5) = 15: 15234, 25134, 31542, 35124, 41235, 42153, 42531, 43152, 45123, 53214, 53241, 53421, 54213, 54231, 54312.
Triangle T(n,k) begins:
1;
1;
1, 1;
1, 3, 1, 1;
1, 6, 6, 5, 4, 1, 1;
1, 10, 20, 20, 26, 15, 15, 6, 5, 1, 1;
1, 15, 50, 70, 105, 106, 104, 90, 65, 51, 27, 21, 7, 6, 1, 1;
- Alois P. Heinz, Rows n = 0..50, flattened
- R. W. Kenyon, D. B. Wilson, Double-dimer pairings and skew Young diagrams, The Electronic Journal of Combinatorics 18(1) #P130, 2011.
- J. S. Kim, K. Mészáros, G. Panova, and D. B. Wilson. Dyck tilings, increasing trees, descents, and inversions, Journal of Combinatorial Theory A 122:9-27, 2014.
-
b:= proc(u, o) option remember; expand(`if`(u+o=0, 1,
add(b(u-j, o+j-1)*x^(j-1), j=1..u)+
add(b(u+j-1, o-j)*x^(j-1), j=1..o)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(0, n)):
seq(T(n), n=0..10);
-
(* Generating function for tiles for Dyck tilings above the zigzag path of order n *)
(* Computed by looking at descents in the insertion sequence for the Dyck-tiling-ribbon bijection, described in the Kim-Meszaros-Panova-Wilson reference *)
(* Since it's above the zigzag, all insertion positions are even *)
(* When the second argument is specified, refines by position of last insertion *)
tilegen[n_, sn_] := tilegen[n, sn] = If[n == 0 || n == 1, 1,
Sum[tilegen[n - 1, j] If[j >= sn, t^(j - sn + 1), 1] //
Expand, {j, 0, 2 (n - 2), 2}]
];
tilegen[n_] := tilegen[n + 1, 2 n];
T[n_, k_] := Coefficient[tilegen[n], t, k]; (* David B. Wilson, Dec 14 2018 *)
A120812
Number of permutations of length n with exactly 4 occurrences of the pattern 2-13.
Original entry on oeis.org
1, 44, 700, 7460, 63648, 470934, 3155691, 19660630, 115855025, 653392740, 3556757490, 18805317960, 97034823600, 490465092600, 2435567286708, 11910569958216, 57470522059594, 274051266477560, 1293219035408080
Offset: 5
Robert Parviainen (robertp(AT)ms.unimelb.edu.au), Jul 05 2006
- R. Parviainen, Lattice path enumeration of permutations with k occurrences of the pattern 2-13, preprint, 2006.
- Robert Parviainen, Lattice Path Enumeration of Permutations with k Occurrences of the Pattern 2-13, Journal of Integer Sequences, Vol. 9 (2006), Article 06.3.2.
A120816
Number of permutations of length n with exactly 8 occurrences of the pattern 2-13.
Original entry on oeis.org
9, 716, 20466, 365996, 4939341, 55098294, 535240680, 4680045630, 37665984798, 283492037268, 2018852205700, 13724440760376, 89682252682256, 566388685336800, 3472428372731880, 20740959695100150, 121059468257664984
Offset: 7
Robert Parviainen (robertp(AT)ms.unimelb.edu.au), Jul 06 2006
- R. Parviainen, Lattice path enumeration of permutations with k occurrences of the pattern 2-13, preprint, 2006.
- Robert Parviainen, Lattice Path Enumeration of Permutations with k Occurrences of the Pattern 2-13, Journal of Integer Sequences, Vol. 9 (2006), Article 06.3.2.
A120813
Number of permutations of length n with exactly 5 occurrences of the pattern 2-13.
Original entry on oeis.org
0, 0, 0, 0, 0, 12, 352, 5392, 59670, 541044, 4285127, 30772896, 205200710, 1291195620, 7754735430, 44827592160, 251003101440, 1368033658992, 7285815623268, 38033923266368, 195107105534280, 985573624414808, 4911044001390648
Offset: 1
Robert Parviainen (robertp(AT)ms.unimelb.edu.au), Jul 06 2006, entries corrected Feb 08 2008
- R. Parviainen, Lattice path enumeration of permutations with k occurrences of the pattern 2-13, preprint, 2006.
- Robert Parviainen, Lattice Path Enumeration of Permutations with k Occurrences of the Pattern 2-13, Journal of Integer Sequences, Vol. 9 (2006), Article 06.3.2.
A120814
Number of permutations of length n with exactly 6 occurrences of the pattern 2-13.
Original entry on oeis.org
0, 0, 0, 0, 0, 2, 140, 3262, 47802, 535990, 5038418, 41781432, 315447990, 2214289350, 14664659100, 92612930280, 562220244768, 3301016862024, 18836205435208, 104862661271840, 571336322754792, 3054404571541092, 16056744308319000
Offset: 1
Robert Parviainen (robertp(AT)ms.unimelb.edu.au), Jul 06 2006
- R. Parviainen, Lattice path enumeration of permutations with k occurrences of the pattern 2-13, preprint, 2006.
- Robert Parviainen, Lattice Path Enumeration of Permutations with k Occurrences of the Pattern 2-13, Journal of Integer Sequences, Vol. 9 (2006), Article 06.3.2.
Showing 1-10 of 14 results.
Comments