cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A381426 A(n,k) is the sum over all ordered partitions of [n] of k^j for an ordered partition with j inversions; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 13, 8, 1, 1, 5, 36, 75, 16, 1, 1, 6, 79, 696, 541, 32, 1, 1, 7, 148, 3851, 27808, 4683, 64, 1, 1, 8, 249, 14808, 567733, 2257888, 47293, 128, 1, 1, 9, 388, 44643, 5942608, 251790113, 369572160, 545835, 256, 1, 1, 10, 571, 113480, 40065301, 9546508128, 335313799327, 121459776768, 7087261, 512
Offset: 0

Views

Author

Alois P. Heinz, Feb 23 2025

Keywords

Examples

			Square array A(n,k) begins:
   1,    1,       1,         1,          1,            1,             1, ...
   1,    1,       1,         1,          1,            1,             1, ...
   2,    3,       4,         5,          6,            7,             8, ...
   4,   13,      36,        79,        148,          249,           388, ...
   8,   75,     696,      3851,      14808,        44643,        113480, ...
  16,  541,   27808,    567733,    5942608,     40065301,     199246816, ...
  32, 4683, 2257888, 251790113, 9546508128, 179833594207, 2099255895008, ...
		

Crossrefs

Main diagonal gives A381427.

Programs

  • Maple
    b:= proc(o, u, t, k) option remember; `if`(u+o=0, 1, `if`(t=1,
          b(u+o, 0$2, k), 0)+add(k^(u+j-1)*b(o-j, u+j-1, 1, k), j=1..o))
        end:
    A:= (n, k)-> b(n, 0$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[o_, u_, t_, k_] := b[o, u, t, k] = If[u + o == 0, 1, If[t == 1, b[u + o, 0, 0, k], 0] + Sum[If[k == u + j - 1 == 0, 1, k^(u + j - 1)]*b[o - j, u + j - 1, 1, k], {j, 1, o}]];
    A[n_, k_] := b[n, 0, 0, k];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Apr 19 2025, after Alois P. Heinz *)

Formula

A(n,k) = Sum_{j=0..binomial(n,2)} k^j * A381299(n,j).

A381373 Sum over all partitions of [n] of n^j for a partition with j inversions.

Original entry on oeis.org

1, 1, 2, 7, 72, 3276, 915848, 2011878835, 42723411900032, 10608257527069388539, 35808039364308986083608352, 1828963737334508176477805993389490, 1618534282345584818909121118371843799592960, 28472613161534902071627567919297331348486838233018341
Offset: 0

Views

Author

Alois P. Heinz, Feb 21 2025

Keywords

Crossrefs

Main diagonal of A381369.

Programs

  • Maple
    b:= proc(o, u, t, k) option remember;
         `if`(u+o=0, 1, `if`(t>0, b(u+o, 0$2, k), 0)+add(k^(u+j-1)*
            b(o-j, u+j-1, min(2, t+1), k), j=`if`(t=0, 1, 1..o)))
        end:
    a:= n-> b(n, 0$2, n):
    seq(a(n), n=0..15);
  • Mathematica
    b[o_, u_, t_, k_] := b[o, u, t, k] =
       If[u + o == 0, 1, If[t > 0, b[u + o, 0, 0, k], 0] + Sum[k^(u + j - 1)*
       b[o - j, u + j - 1, Min[2, t + 1], k], {j, If[t == 0, {1}, Range[o]]}]];
    a[n_] := b[n, 0, 0, n];
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Mar 15 2025, after Alois P. Heinz *)

Formula

a(n) = Sum_{j>=0} n^j * A125810(n,j).
a(n) = A381369(n,n).
a(n) mod n = A062173(n) for n>=1.
a(n) mod 2 = A120325(n+1) for n>=1.
Showing 1-2 of 2 results.