cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A382223 Rectangular array read by antidiagonals: T(n,k) is the number of labeled digraphs on [n] along with a (coloring) function c:[n] -> [k] with the property that for all u,v in [n], u->v implies u=0, k>=0.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 5, 3, 1, 0, 1, 16, 12, 4, 1, 0, 1, 67, 66, 22, 5, 1, 0, 1, 374, 513, 172, 35, 6, 1, 0, 1, 2825, 5769, 1969, 355, 51, 7, 1, 0, 1, 29212, 95706, 33856, 5380, 636, 70, 8, 1, 0, 1, 417199, 2379348, 893188, 125090, 12006, 1036, 92, 9, 1
Offset: 0

Views

Author

Geoffrey Critzer, Mar 23 2025

Keywords

Examples

			 1, 1,   1,    1,     1,      1,      1,...
 0, 1,   2,    3,     4,      5,      6,...
 0, 1,   5,   12,    22,     35,     51,...
 0, 1,  16,   66,   172,    355,    636,...
 0, 1,  67,  513,  1969,   5380,  12006,...
 0, 1, 374, 5769, 33856, 125090, 352476,...
		

Crossrefs

Cf. A006116 column k=2, A289539 column k=3, A005329, A382363.

Programs

  • Mathematica
    nn = 6; B[n_] := QFactorial[n, 2];e[z_] := Sum[z^n/B[n], {n, 0, nn}]; zetapolys = Drop[Map[Expand[InterpolatingPolynomial[#, x]] &,Transpose[Table[Table[B[n], {n, 0, nn}] CoefficientList[Series[e[z]^k, {z, 0, nn}], z], {k, 1, nn}]]], -1];Table[zetapolys /. x -> i, {i, 0, nn}] // Transpose // Grid

Formula

Sum_{n>=0} T(n,k)/A005329(n) = e(x)^k, where e(x) = Sum_{n>=0}x^n/A005329(n).
Showing 1-1 of 1 results.