cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000039 Coefficient of q^(2n) in the series expansion of Ramanujan's mock theta function f(q).

Original entry on oeis.org

1, -2, -3, -5, -6, -10, -11, -17, -21, -27, -33, -46, -53, -68, -82, -104, -123, -154, -179, -221, -262, -314, -369, -446, -515, -614, -715, -845, -977, -1148, -1321, -1544, -1778, -2060, -2361, -2736, -3121, -3592, -4097, -4696, -5340, -6105, -6916, -7882, -8919, -10123, -11429, -12952, -14580
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A000025(2n)=a(n). Cf. A000199.

Programs

  • Mathematica
    f[q_, s_] := Sum[q^(n^2)/Product[1+q^k, {k, n}]^2, {n, 0, s}]; Take[CoefficientList[Series[f[q, 100], {q, 0, 100}], q], {1, -1, 2}]
  • PARI
    a(n)=if(n<0,0,polcoeff(1+sum(k=1,sqrtint(2*n),x^k^2/prod(i=1,k,1+x^i,1+O(x^(2*n)))^2),2*n))

Formula

a(n) ~ -exp(Pi*sqrt(n/3)) / (2*sqrt(2*n)). - Vaclav Kotesovec, Jun 12 2019

Extensions

More terms from Eric W. Weisstein