A000057 Primes dividing all Fibonacci sequences.
2, 3, 7, 23, 43, 67, 83, 103, 127, 163, 167, 223, 227, 283, 367, 383, 443, 463, 467, 487, 503, 523, 547, 587, 607, 643, 647, 683, 727, 787, 823, 827, 863, 883, 887, 907, 947, 983, 1063, 1123, 1163, 1187, 1283, 1303, 1327, 1367, 1423, 1447, 1487, 1543, 1567, 1583
Offset: 1
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Christian G. Bower and T. D. Noe, Table of n, a(n) for n = 1..1000
- U. Alfred, Primes which are factors of all Fibonacci sequences, Fib. Quart., 2 (1964), 33-38.
- B. Avila and T. Khovanova, Free Fibonacci Sequences, arXiv preprint arXiv:1403.4614 [math.NT], 2014 and J. Int. Seq. 17 (2014) # 14.8.5.
- D. M. Bloom, On periodicity in generalized Fibonacci sequences, Am. Math. Monthly 72 (8) (1965) 856-861.
- H. E. A. Campbell and David L. Wehlau, Zigzag polynomials, Artin's conjecture and trinomials, Finite Fields and Their Applications (2023) Vol. 89, 102198.
- Paul Cubre and Jeremy Rouse, Divisibility properties of the Fibonacci entry point, arXiv:1212.6221 [math.NT], 2012.
- Ron Knott, General Fibonacci Series.
- Rishi Kumar, Kepler Sets of Second-Order Linear Recurrence Sequences Over Q_p, arXiv:2406.05890 [math.NT], 2024. See pp. 2, 7.
- N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence).
Programs
-
Mathematica
Select[Prime[Range[1000]], Function[p, a=0; b=1; n=1; While[b != 0, t=b; b = Mod[(a+b), p]; a=t; n++]; n>p]] (* Jean-François Alcover, Aug 05 2018, after Charles R Greathouse IV *)
-
PARI
select(p->my(a=0,b=1,n=1,t);while(b,t=b;b=(a+b)%p; a=t; n++); n>p, primes(1000)) \\ Charles R Greathouse IV, Jan 02 2013
-
PARI
is(p)=fordiv(p-1,d,if(((Mod([1,1;1,0],p))^d)[1,2]==0,return(0)));fordiv(p+1,d,if(((Mod([1,1;1,0],p))^d)[1,2]==0,return(d==p+1 && isprime(p)))) \\ Charles R Greathouse IV, Jan 02 2013
-
PARI
is(p)=if((p-2)%5>1, return(0)); my(f=factor(p+1)); for(i=1, #f~, if((Mod([1, 1; 1, 0], p)^((p+1)/f[i, 1]))[1, 2]==0, return(0))); isprime(p) \\ Charles R Greathouse IV, Nov 19 2014
Extensions
More terms from Don Reble, Nov 14 2006
Comments