A000098 Number of partitions of n if there are two kinds of 1, two kinds of 2 and two kinds of 3.
1, 2, 5, 10, 19, 33, 57, 92, 147, 227, 345, 512, 752, 1083, 1545, 2174, 3031, 4179, 5719, 7752, 10438, 13946, 18519, 24428, 32051, 41805, 54265, 70079, 90102, 115318, 147005, 186626, 236064, 297492, 373645, 467707
Offset: 0
Examples
a(3)=10 because we have 3, 3', 2+1, 2+1', 2'+1, 2'+1', 1+1+1, 1+1+1', 1+1'+1' and 1'+1'+1'.
References
- H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 90.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Álvaro Gutiérrez and Mercedes H. Rosas, Partial symmetries of iterated plethysms, arXiv:2201.00240 [math.CO], 2022.
- N. J. A. Sloane, Transforms
Crossrefs
Programs
-
Mathematica
CoefficientList[1/((1-x)*(1-x^2)*(1-x^3)*QPochhammer[x]) + O[x]^40, x] (* Jean-François Alcover, Feb 04 2016 *) Table[Length@IntegerPartitions[n, All, Range@n~Join~Range@3], {n,0,35}] (* Robert Price, Jul 28 2020 *) T[n_, 0] := PartitionsP[n]; T[n_, m_] /; (n >= m (m + 1)/2) := T[n, m] = T[n - m, m - 1] + T[n - m, m]; T[, ] = 0; a[n_] := T[n + 6, 3]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 30 2021 *)
Formula
Euler transform of 2 2 2 1 1 1 1...
G.f.: 1/((1-x)(1-x^2)(1-x^3)*Product_{k>=1} (1-x^k)).
a(n) = Sum_{j=0..floor(n/3)} A000097(n-3*j), n >= 0.
a(n) ~ sqrt(n) * exp(Pi*sqrt(2*n/3)) / (2*sqrt(2)*Pi^3). - Vaclav Kotesovec, Aug 18 2015
Extensions
Edited by Emeric Deutsch, Mar 23 2005
Comments