cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000107 Number of rooted trees with n nodes and a single labeled node; pointed rooted trees; vertebrates.

Original entry on oeis.org

0, 1, 2, 5, 13, 35, 95, 262, 727, 2033, 5714, 16136, 45733, 130046, 370803, 1059838, 3035591, 8710736, 25036934, 72069134, 207727501, 599461094, 1731818878, 5008149658, 14496034714, 41993925955, 121747732406, 353221737526, 1025471857282, 2978995353959, 8658997820084
Offset: 0

Views

Author

Keywords

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 61, 62 (2.1.8-2.1.10).
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 134.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A339067.
INVERT transform of A000081.
Column k=1 of A008295.

Programs

  • Maple
    with(numtheory): b:= proc(n) option remember; `if`(n<2, n, add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1) /(n-1)) end: a:= proc(n) option remember; b(n) +add(a(n-i) *b(i), i=1..n-1) end: seq(a(n), n=0..26); # Alois P. Heinz, Jun 02 2009
  • Mathematica
    b[0] = 0; b[1] = 1; b[n_] := b[n] = Sum[ Sum[ d*b[d], {d, Divisors[j]}]*b[n-j], {j, 1, n-1}]/(n-1); a[n_] := a[n] = b[n] + Sum[ a[n-i]*b[i], {i, 1, n-1}]; Table[ a[n], {n, 0, 26}](* Jean-François Alcover, Mar 07 2012, after Alois P. Heinz *)

Formula

G.f.: A000081(x)/(1-A000081(x)), where A000081(x) is the g.f. of A000081 [Harary-Robinson]. - R. J. Mathar, Sep 16 2015
a(n) ~ A340310 * A051491^n / sqrt(n). - Vaclav Kotesovec, Jan 04 2021

Extensions

Better description from Christian G. Bower, Apr 15 1998