cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000130 One-half the number of permutations of length n with exactly 1 rising or falling successions.

Original entry on oeis.org

0, 0, 1, 2, 5, 20, 115, 790, 6217, 55160, 545135, 5938490, 70686805, 912660508, 12702694075, 189579135710, 3019908731105, 51139445487680, 917345570926087, 17376071107513090, 346563420097249645, 7259714390232227300, 159352909727731210835, 3657569576966074846118
Offset: 0

Views

Author

Keywords

Comments

(1/2) times number of permutations of 12...n such that exactly one of the following occurs: 12, 23, ..., (n-1)n, 21, 32, ..., n(n-1).
Partial sums seem to be in A000239. - Ralf Stephan, Aug 28 2003

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.
  • J. Riordan, A recurrence for permutations without rising or falling successions. Ann. Math. Statist. 36 (1965), 708-710.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002464, A086853. Equals A086852/2. A diagonal of A010028.

Programs

  • Maple
    S:= proc(n) option remember; `if`(n<4, [1, 1, 2*t, 4*t+2*t^2]
           [n+1], expand((n+1-t)*S(n-1) -(1-t)*(n-2+3*t)*S(n-2)
           -(1-t)^2*(n-5+t)*S(n-3) +(1-t)^3*(n-3)*S(n-4)))
        end:
    a:= n-> coeff(S(n), t, 1)/2:
    seq(a(n), n=0..30);  # Alois P. Heinz, Dec 21 2012
  • Mathematica
    S[n_] := S[n] = If[n<4, {1, 1, 2*t, 4*t+2*t^2}[[n+1]], Expand[(n+1-t)*S[n-1] - (1-t)*(n-2+3*t)*S[n-2] - (1-t)^2*(n-5+t)*S[n-3] + (1-t)^3*(n-3)*S[n-4]]]; a[n_] := Coefficient[S[n], t, 1]/2; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *)

Formula

Coefficient of t^1 in S[n](t) defined in A002464, divided by 2.
a(n) ~ exp(-2) * n!. - Vaclav Kotesovec, Sep 11 2014