cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000146 From von Staudt-Clausen representation of Bernoulli numbers: a(n) = Bernoulli(2n) + Sum_{(p-1)|2n} 1/p.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, -6, 56, -528, 6193, -86579, 1425518, -27298230, 601580875, -15116315766, 429614643062, -13711655205087, 488332318973594, -19296579341940067, 841693047573682616, -40338071854059455412, 2115074863808199160561, -120866265222965259346026
Offset: 1

Views

Author

Keywords

Comments

The von Staudt-Clausen theorem states that this number is always an integer.

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Th. 118.
  • Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, pp. 168-170.
  • H. Rademacher, Topics in Analytic Number Theory, Springer, 1973, Section 5.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A000146 := proc(n) local a ,i,p; a := bernoulli(2*n) ;for i from 1 do p := ithprime(i) ; if (2*n) mod (p-1) = 0 then a := a+1/p ; elif p-1 > 2*n then break; end if; end do: a ; end proc: # R. J. Mathar, Jul 08 2011
  • Mathematica
    Table[ BernoulliB[2 n] + Total[ 1/Select[ Prime /@ Range[n+1], Divisible[2n, #-1] &]], {n, 1, 22}] (* Jean-François Alcover, Oct 12 2011 *)
  • PARI
    a(n)=if(n<1,0,sumdiv(2*n,d, isprime(d+1)/(d+1))+bernfrac(2*n))
    
  • Python
    from fractions import Fraction
    from sympy import bernoulli, divisors, isprime
    def A000146(n): return int(bernoulli(m:=n<<1)+sum(Fraction(1,d+1) for d in divisors(m,generator=True) if isprime(d+1))) # Chai Wah Wu, Apr 14 2023

Extensions

Signs courtesy of Antreas P. Hatzipolakis (xpolakis(AT)hol.gr)
More terms from Michael Somos