A000147 Number of trees of diameter 5.
0, 0, 0, 0, 0, 1, 2, 7, 14, 32, 58, 110, 187, 322, 519, 839, 1302, 2015, 3032, 4542, 6668, 9738, 14006, 20036, 28324, 39830, 55473, 76875, 105692, 144629, 196585, 266038, 357952, 479664, 639519, 849425, 1123191, 1479972, 1942284, 2540674, 3311415
Offset: 1
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- J. Riordan, Enumeration of trees by height and diameter, IBM J. Res. Dev. 4 (1960), 473-478.
- Index entries for sequences related to trees
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1 or k<1, 0, add(binomial(b((i-1)$2, k-1)+j-1, j)*b(n-i*j, i-1, k), j=0..n/i))) end: g:= n-> b((n-1)$2, 2) -b((n-1)$2, 1): a:= n-> (add(g(i)*g(n-i), i=0..n)+`if`(n::even, g(n/2), 0))/2: seq(a(n), n=1..45); # Alois P. Heinz, Feb 09 2016
-
Mathematica
b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1 || k<1, 0, Sum[Binomial[ b[i-1, i-1, k-1]+j-1, j]*b[n-i*j, i-1, k], {j, 0, n/i}]]]; g[n_] := b[n-1, n-1, 2] - b[n-1, n-1, 1]; a[n_] := (Sum[g[i]*g[n-i], {i, 0, n}] + If[EvenQ[n], g[n/2], 0])/2; Table[a[n], {n, 1, 45}] (* Jean-François Alcover, Feb 17 2016, after Alois P. Heinz *)
Formula
If n odd, a(n) = Sum_{k=1..(n-1)/2} b(k)*b(n-k); if n even, a(n) = (Sum_{k=1..n/2-1} b(k)*b(n-k)) + C(b(n/2)+1, 2), where b(n) = P(n-1)-1 = A000065(n-1). - Franklin T. Adams-Watters, Jan 13 2006
Extensions
More terms from Franklin T. Adams-Watters, Jan 13 2006
Comments