A000150 Number of dissections of an n-gon, rooted at an exterior edge, asymmetric with respect to that edge.
0, 0, 1, 2, 7, 20, 66, 212, 715, 2424, 8398, 29372, 104006, 371384, 1337220, 4847208, 17678835, 64821680, 238819350, 883629164, 3282060210, 12233125112, 45741281820, 171529777432, 644952073662, 2430973096720, 9183676536076
Offset: 0
References
- S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., 35 (1995) 743-751
- R. K. Guy, "Dissecting a polygon into triangles," Bull. Malayan Math. Soc., Vol. 5, pp. 57-60, 1958.
- R. K. Guy, Dissecting a polygon into triangles, Research Paper #9, Math. Dept., Univ. Calgary, 1967.
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 78, (3.5.26).
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- P. K. Stockmeyer, The charm bracelet problem and its applications, pp. 339-349 of Graphs and Combinatorics (Washington, Jun 1973), Ed. by R. A. Bari and F. Harary. Lect. Notes Math., Vol. 406. Springer-Verlag, 1974.
Links
- T. D. Noe, Table of n, a(n) for n=0..200
- S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., 35 (1995) 743-751. [Annotated scanned copy]
- R. K. Guy, Dissecting a polygon into triangles, Research Paper #9, Math. Dept., Univ. Calgary, 1967. [Annotated scanned copy]
- F. Harary and E. M. Palmer, On acyclic simplicial complexes, Mathematika 15 1968 115-122.
- Krishna Menon and Anurag Singh, Grassmannian permutations avoiding identity, arXiv:2212.13794 [math.CO], 2022.
- P. J. Stockmeyer, The charm bracelet problem and its applications, pp. 339-349 of Graphs and Combinatorics (Washington, Jun 1973), Ed. by R. A. Bari and F. Harary. Lect. Notes Math., Vol. 406. Springer-Verlag, 1974. [Scanned annotated and corrected copy]
- Index entries for sequences related to Lyndon words
Crossrefs
Programs
-
Mathematica
nn=20;CoefficientList[Series[x/2(((1-(1-4x)^(1/2))/(2x))^2-(1-(1-4x^2)^(1/2))/(2x^2)),{x,0,nn}],x] (* Geoffrey Critzer, Feb 21 2013 *)
Formula
Let c(x) = (1-sqrt(1-4*x))/(2*x) = g.f. for Catalan numbers (A000108), let d(x) = 1+x*c(x^2). Then g.f. is (c(x)-d(x))/2.
G.f.: (sqrt(1-4*z^2) - sqrt(1-4*z) - 2*z)/(4*z). - Emeric Deutsch, Nov 13 2004
With c(x) defined as above: g.f. = x*(c(x)^2/2 - c(x^2)/2). - Geoffrey Critzer, Feb 21 2013
a(n) = ( 2^(n-3)/sqrt(Pi) ) * ( 4*2^n*GAMMA(n+1/2)/GAMMA(n+2) + ((-1)^n - 1)*GAMMA(n/2)/GAMMA(n/2 + 3/2) ) for n>0. - Mark van Hoeij, Nov 11 2009
a(n) ~ 2^(2*n-1) / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 10 2014
D-finite with recurrence +n*(n+1)*(n-2)^2*a(n) -2*n*(2*n-5)*(n-1)^2*a(n-1) -4*n*(n-2)^3*a(n-2) +8*(2*n-5)*(n-3)*(n-1)^2*a(n-3)=0. - R. J. Mathar, Oct 28 2021
Extensions
Additional comments from Clark Kimberling
Comments