cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000181 Coefficients of ménage hit polynomials.

Original entry on oeis.org

2, 15, 60, 469, 3660, 32958, 328920, 3614490, 43341822, 563144725, 7880897892, 118177520295, 1890389939000, 32130521850972, 578260307815920, 10985555094348948, 219687969344126490, 4613039009310624795, 101479234383619208204, 2333872309936442446905
Offset: 4

Views

Author

Keywords

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 197.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A058087. Cf. A000179, A000425.

Formula

Conjecture: 3*(2111*n-8303)*(n-4)*(-9+2*n)^2*a(n) - (n-3)*(25332*n^4 - 377236*n^3 + 1898681*n^2 - 3320738*n + 484000)*a(n-1) - 2*(n-4)*(12140*n^4 - 118152*n^3 + 337063*n^2 - 377436*n + 225720)*a(n-2) + (1052*n^5 - 40656*n^4 + 266063*n^3 - 549153*n^2 + 49850*n + 655200)*a(n-3) +(263*n+640)*(n-3)*(-7+2*n)^2*a(n-4) = 0. - R. J. Mathar, Nov 02 2015
Conjecture: a(n) + 2*a(n+p) + a(n+2*p) is divisible by p for any prime p > 3. - Mark van Hoeij, Jun 10 2019