cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000190 Number of solutions to x^4 == 0 (mod n).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 2, 1, 1, 1, 8, 1, 3, 1, 2, 1, 1, 1, 4, 5, 1, 9, 2, 1, 1, 1, 8, 1, 1, 1, 6, 1, 1, 1, 4, 1, 1, 1, 2, 3, 1, 1, 8, 7, 5, 1, 2, 1, 9, 1, 4, 1, 1, 1, 2, 1, 1, 3, 16, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 5, 2, 1, 1, 1, 8, 27, 1, 1, 2, 1, 1, 1, 4, 1, 3
Offset: 1

Views

Author

Keywords

Comments

Shadow transform of fourth powers A000583. - Michel Marcus, Jun 06 2013

Crossrefs

Cf. A000583.

Programs

  • Mathematica
    Array[ Function[ n, Count[ Array[ PowerMod[ #, 4, n ]&, n, 0 ], 0 ] ], 100 ]
    f[p_, e_] := p^Floor[3*e/4]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 19 2020 *)
  • PARI
    a(n)=my(f=factor(n));prod(i=1,#f[,1],f[i,1]^(3*f[i,2]\4)) \\ Charles R Greathouse IV, Jun 07 2013

Formula

Multiplicative with a(p^e) = p^[3e/4]. - David W. Wilson, Aug 01 2001
Dirichlet g.f.: zeta(4*s-3) * Product_{p prime} (1 + 1/p^s + 1/p^(2*s-1) + 1/p^(3*s-2)). - Amiram Eldar, Dec 18 2023