cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000198 Largest order of automorphism group of a tournament with n nodes.

Original entry on oeis.org

1, 1, 3, 3, 5, 9, 21, 21, 81, 81, 81, 243, 243, 441, 1215, 1701, 1701, 6561, 6561, 6561, 45927, 45927, 45927, 137781, 137781, 229635, 1594323, 1594323, 1594323, 4782969, 4782969, 7971615, 14348907, 33480783, 33480783, 129140163, 129140163, 129140163
Offset: 1

Views

Author

Keywords

References

  • J. W. Moon, Topics on Tournaments. Holt, NY, 1968, p. 81.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    a:= proc(n) local t, r; t:= irem(n, 9);
       `if`(3^ilog[3](n)=n, 3^((3^ilog[3](n)-1)/2),
       `if`(irem(n, 5, 'r')=0 and 3^ilog[3](r)=r, 5*3^((5*3^ilog[3](r)-5)/2),
       `if`(irem(n, 7, 'r')=0 and 3^ilog[3](r)=r, 7*3^((7*3^ilog[3](r)-5)/2),
       `if`(irem(n, 3, 'r')=0, 3^r*a(r),
       `if`(t in {1, 2, 4}, a(n-1),
       `if`(t = 8, max(a(n-1), a(5)*a(n-5)),
       `if`(t = 5, max(a(2)*a(n-2), a(5)*a(n-5), a(7)*a(n-7)),
            a(7)*a(n-7) )))))))
        end:
    seq(a(n), n=1..50);  # Alois P. Heinz, Jun 29 2012
  • Mathematica
    a[n_] := a[n] = With[{t = Mod[n, 9]}, Which[ IntegerQ[Log[3, n]], 3^((1/2)*(n-1)),{q, r} = QuotientRemainder[n, 5]; r == 0 && IntegerQ[Log[3, q]], 5*3^((1/2)*(n-5)),{q, r} = QuotientRemainder[n, 7];r == 0 && IntegerQ[Log[3, q]], 7*3^((1/2)*(n-5)), {q, r} = QuotientRemainder[n, 3]; r == 0, 3^q*a[q],MemberQ[{1, 2, 4}, t], a[n-1],t == 8, Max[a[n-1], a[5]*a[n-5]], t == 5, Max[a[2]*a[n-2],a[5]*a[n-5], a[7]*a[n-7]],True, a[7]*a[n-7]]]; Table[a[n], {n, 1, 38}] (* Jean-François Alcover, Nov 12 2012, after Alois P. Heinz *)
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A000198(n):
        if n <= 7: return (1, 1, 3, 3, 5, 9, 21)[n-1]
        if (r:=n%9) in {0,3,6}:
            return 3**(m:=n//3)*A000198(m)
        elif r in {1,2,4}:
            return A000198(n-1)
        elif r == 5:
            return max(A000198(n-2),5*A000198(n-5),21*A000198(n-7))
        elif r == 7:
            return 21*A000198(n-7)
        elif r == 8:
            return max(A000198(n-1),5*A000198(n-5)) # Chai Wah Wu, Jul 01 2024

Formula

a(3^k) = 3^((3^k - 1)/2), a(5*3^k) = 5*3^((5*3^k - 5)/2), a(7*3^k) = 7*3^((7*3^k - 5)/2), and, for all other n, a(n) = max(a(i)a(n-i)) where the maximum is taken over 1 <= i <= n-1 (from Alspach and Berggren (1973) Theorem 4).
a(3r) = (3^r)a(r), a(n) = a(n-1) for n = 1, 2 or 4 mod 9, a(9k+8) = max(a(9k+7), a(5)a(9k+3)), a(9k+5) = max(a(2)a(9k+3), a(5)a(9k), a(7)a(9k-2)), a(9k+7) = a(7)a(9k) (from Alspach and Berggren (1973) Theorem 5).

Extensions

Edited and extended by Joseph Myers, Jun 28 2012