A000199 Coefficient of q^(2n-1) in the series expansion of Ramanujan's mock theta function f(q).
1, 3, 3, 7, 6, 12, 13, 20, 21, 34, 36, 51, 58, 78, 89, 118, 131, 171, 197, 245, 279, 349, 398, 486, 557, 671, 767, 920, 1046, 1244, 1421, 1667, 1898, 2225, 2525, 2937, 3333, 3856, 4367, 5034, 5683, 6521, 7365, 8409, 9473, 10795, 12133, 13775, 15466
Offset: 1
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..5000 (terms 1..1001 from T. D. Noe)
- L. A. Dragonette, Some Asymptotic Formulae for the Mock Theta Series of Ramanujan, Trans. Amer. Math. Soc., 72 (1952), 474-500.
- Eric Weisstein's World of Mathematics, Mock Theta Function.
Programs
-
Mathematica
f[q_, s_] := Sum[q^(n^2)/Product[1+q^k, {k, n}]^2, {n, 0, s}]; Take[CoefficientList[Series[f[q, 100 ], {q, 0, 100}], q], {2, -1, 2}]
-
PARI
a(n)=if(n<1,0,polcoeff(1+sum(k=1,sqrtint(2*n-1),x^k^2/prod(i=1,k,1+x^i,1+O(x^(2*n-1)))^2),2*n-1))
Formula
a(n) ~ exp(Pi*sqrt(n/3)) / (2*sqrt(2*n)). - Vaclav Kotesovec, Jun 11 2019
Extensions
More terms from Eric W. Weisstein