cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000199 Coefficient of q^(2n-1) in the series expansion of Ramanujan's mock theta function f(q).

Original entry on oeis.org

1, 3, 3, 7, 6, 12, 13, 20, 21, 34, 36, 51, 58, 78, 89, 118, 131, 171, 197, 245, 279, 349, 398, 486, 557, 671, 767, 920, 1046, 1244, 1421, 1667, 1898, 2225, 2525, 2937, 3333, 3856, 4367, 5034, 5683, 6521, 7365, 8409, 9473, 10795, 12133, 13775, 15466
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A000025(2n-1)=a(n). Cf. A000039.

Programs

  • Mathematica
    f[q_, s_] := Sum[q^(n^2)/Product[1+q^k, {k, n}]^2, {n, 0, s}]; Take[CoefficientList[Series[f[q, 100 ], {q, 0, 100}], q], {2, -1, 2}]
  • PARI
    a(n)=if(n<1,0,polcoeff(1+sum(k=1,sqrtint(2*n-1),x^k^2/prod(i=1,k,1+x^i,1+O(x^(2*n-1)))^2),2*n-1))

Formula

a(n) ~ exp(Pi*sqrt(n/3)) / (2*sqrt(2*n)). - Vaclav Kotesovec, Jun 11 2019

Extensions

More terms from Eric W. Weisstein