cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000232 Construct a triangle as in A036262. Sequence is one less than the position of the first number larger than 2 in the n-th row (n-th difference).

Original entry on oeis.org

3, 8, 14, 14, 25, 24, 23, 22, 25, 59, 98, 97, 98, 97, 174, 176, 176, 176, 176, 291, 290, 289, 740, 874, 873, 872, 873, 872, 871, 870, 869, 868, 867, 866, 2180, 2179, 2178, 2177, 2771, 2770, 2769, 2768, 2767, 2766, 2765, 2764, 2763, 2763, 2763, 2763, 3366, 4208, 4207
Offset: 1

Views

Author

Keywords

Comments

Related to Gilbreath conjecture.

References

  • W. Sierpiński, A Selection of Problems in the Theory of Numbers. Macmillan, NY, 1964, p. 35.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001549.

Programs

  • Maple
    A000232 := proc(n)
        local k;
        for k from 1 do
            if A036262(n,k) > 2 then
                return k-1 ;
            end if;
        end do:
    end proc:
    seq(A000232(n),n=1..40) ; # R. J. Mathar, May 10 2023
  • Mathematica
    max = 10^4; triangle = NestList[Abs[Differences[#]] &, Prime[Range[max]], max]; a[n_] := (p = Position[triangle[[n + 1]], k_ /; k > 2, 1, 1]; If[p == {}, Nothing, p[[1, 1]] - 1]); Table[a[n], {n, 1, Sqrt[max]}] (* Jean-François Alcover, Feb 06 2016 *)

Formula

a(n) = A036277(n) - 1. - T. D. Noe, Feb 03 2007

Extensions

Edited by Robert G. Wilson v, Aug 18 2002
More terms from Jean-François Alcover, Feb 06 2016