A000232 Construct a triangle as in A036262. Sequence is one less than the position of the first number larger than 2 in the n-th row (n-th difference).
3, 8, 14, 14, 25, 24, 23, 22, 25, 59, 98, 97, 98, 97, 174, 176, 176, 176, 176, 291, 290, 289, 740, 874, 873, 872, 873, 872, 871, 870, 869, 868, 867, 866, 2180, 2179, 2178, 2177, 2771, 2770, 2769, 2768, 2767, 2766, 2765, 2764, 2763, 2763, 2763, 2763, 3366, 4208, 4207
Offset: 1
Keywords
References
- W. Sierpiński, A Selection of Problems in the Theory of Numbers. Macmillan, NY, 1964, p. 35.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n=1..274
- Chris Caldwell, Gilbreath's conjecture
- Albert N. Debono, NUMBERS AND COMPUTERS (11)
- R. B. Killgrove and K. E. Ralston, On a conjecture concerning the primes, Math. Comp., 13 (1959), 121-122.
- Eric Weisstein's World of Mathematics, Gilbreath's Conjecture
- Index entries for primes, gaps between
Crossrefs
Cf. A001549.
Programs
-
Maple
A000232 := proc(n) local k; for k from 1 do if A036262(n,k) > 2 then return k-1 ; end if; end do: end proc: seq(A000232(n),n=1..40) ; # R. J. Mathar, May 10 2023
-
Mathematica
max = 10^4; triangle = NestList[Abs[Differences[#]] &, Prime[Range[max]], max]; a[n_] := (p = Position[triangle[[n + 1]], k_ /; k > 2, 1, 1]; If[p == {}, Nothing, p[[1, 1]] - 1]); Table[a[n], {n, 1, Sqrt[max]}] (* Jean-François Alcover, Feb 06 2016 *)
Extensions
Edited by Robert G. Wilson v, Aug 18 2002
More terms from Jean-François Alcover, Feb 06 2016
Comments