cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000291 Number of bipartite partitions of n white objects and 2 black ones.

Original entry on oeis.org

2, 4, 9, 16, 29, 47, 77, 118, 181, 267, 392, 560, 797, 1111, 1541, 2106, 2863, 3846, 5142, 6808, 8973, 11733, 15275, 19753, 25443, 32582, 41569, 52770, 66757, 84078, 105555, 131995, 164566, 204450, 253292, 312799, 385285, 473183, 579722, 708353, 863553
Offset: 0

Views

Author

Keywords

Comments

Number of ways to factor p^n*q^2 where p and q are distinct primes.
a(n) is the number of multiset partitions of the multiset {r^n, s^2}. - Joerg Arndt, Jan 01 2024

Examples

			a(2) = 9: let p = 2 and q = 3, p^2*q^2 = 36; there are 9 factorizations: (36), (18*2), (12*3), (9*4), (9*2^2), (6*6), (6*3*2), (4*3^2), (3^2*2^2).
		

References

  • M. S. Cheema and H. Gupta, Tables of Partitions of Gaussian Integers. National Institute of Sciences of India, Mathematical Tables, Vol. 1, New Delhi, 1956, p. 1.
  • Amarnath Murthy, "Generalization of Smarandache Factor Partition introducing Smarandache Factor Partition". Smarandache Notions Journal, 1-2-3, vol. 11, 2000.
  • Amarnath Murthy, Program for finding out the number of Smarandache Factor Partitions. Smarandache Notions Journal, Vol. 13, 2002.
  • Amarnath Murthy, e-book, MS LIT format, "Ideas on Smarandache Notions".
  • Amarnath Murthy and Charles Ashbacher, Generalized Partitions and Some New Ideas on Number Theory and Smarandache Sequences, Hexis, Phoenix; USA 2005. See Section 1.9, 1.14.
  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778. - N. J. A. Sloane, Dec 30 2018
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 2 of A054225.
Cf. A005380.

Programs

  • Mathematica
    max = 40; col = 2; s1 = Series[Product[1/(1-x^(n-k)*y^k), {n, 1, max+2}, {k, 0, n}], {y, 0, col}] // Normal; s2 = Series[s1, {x, 0, max+1}]; a[n_] := SeriesCoefficient[s2, {x, 0, n}, {y, 0, col}]; Table[ a[n] , {n, 0, max}] (* Jean-François Alcover, Mar 13 2014 *)
    nmax = 50; CoefficientList[Series[1/(1-x)*(1 + 1/(1-x^2))*Product[1/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 01 2016 *)

Formula

a(n) = if n <= 2 then A054225(2,n) else A054225(n,2). - Reinhard Zumkeller, Nov 30 2011
From Vaclav Kotesovec, Feb 01 2016, corrected Nov 05 2016: (Start)
a(n) = A000070(n) + A000097(n).
a(n) ~ sqrt(3) * exp(Pi*sqrt(2*n/3)) / (4*Pi^2) * (1 + 83*Pi/(24*sqrt(6*n))).
(End)

Extensions

Edited by Christian G. Bower, Jan 08 2004