A000397 Number of partitions into non-integral powers.
6, 32, 109, 288, 654, 1337, 2506, 4414, 7379, 11822, 18273, 27356, 39938, 56974, 79607, 109267, 147523, 196295, 257715, 334407, 429086, 545034, 685917, 855886, 1059360, 1301776, 1588321, 1925620, 2320544, 2780468, 3314007, 3930001, 4638319, 5449943, 6376505, 7430471, 8625369, 9976540, 11498855, 13210238, 15128487, 17272896, 19664754, 22326319, 25280987, 28554486, 32173404, 36166409, 40563607, 45397395, 50701682, 56512012, 62866699, 69805531, 77370606, 85607286, 94560129, 104280410, 114819255, 126229853, 138570284, 151899428, 166278945, 181775849, 198456941, 216394746, 235661505, 256338017, 278503009, 302242623, 327644632, 354799834, 383805368, 414759214, 447764499, 482931051
Offset: 5
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- B. K. Agarwala, F. C. Auluck, Statistical mechanics and partitions into non-integral powers of integers, Proc. Camb. Phil. Soc., 47 (1951), 207-216.
- B. K. Agarwala and F. C. Auluck, Statistical mechanics and partitions into non-integral powers of integers, Proc. Camb. Phil. Soc., 47 (1951), 207-216. [Annotated scanned copy]
Programs
-
Maple
A000397 := proc(n) local a,x1,x2,x3 ; a := 0 ; for x1 from 1 to n^2 do for x2 from x1+1 to floor( (n-x1^(1/2))^2 ) do x3 := (n-x1^(1/2)-x2^(1/2))^2 ; if floor(x3) >= x2+1 then a := a+floor(x3-x2) ; fi; od: od: a ; end: for n from 5 do printf("%d,\n",A000397(n)) ; od: # R. J. Mathar, Sep 29 2009
-
Mathematica
A000397[n_] := Module[{a, x1, x2, x3}, a = 0; For[x1 = 1, x1 <= n^2, x1++, For[x2 = x1+1, x2 <= Floor[(n-x1^(1/2))^2], x2++, x3 = (n-x1^(1/2) - x2^(1/2))^2 ; If[Floor[x3] >= x2+1, a = a + Floor[x3-x2]]]]; a]; Reap[ For[n = 5, n <= 40, n++, Print[an = A000397[n]; Sow[an]]]][[2, 1]] (* Jean-François Alcover, Feb 08 2016, after R. J. Mathar *)
Extensions
More terms from R. J. Mathar, Sep 29 2009
More terms from Sean A. Irvine, Nov 14 2010
Comments