cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000397 Number of partitions into non-integral powers.

Original entry on oeis.org

6, 32, 109, 288, 654, 1337, 2506, 4414, 7379, 11822, 18273, 27356, 39938, 56974, 79607, 109267, 147523, 196295, 257715, 334407, 429086, 545034, 685917, 855886, 1059360, 1301776, 1588321, 1925620, 2320544, 2780468, 3314007, 3930001, 4638319, 5449943, 6376505, 7430471, 8625369, 9976540, 11498855, 13210238, 15128487, 17272896, 19664754, 22326319, 25280987, 28554486, 32173404, 36166409, 40563607, 45397395, 50701682, 56512012, 62866699, 69805531, 77370606, 85607286, 94560129, 104280410, 114819255, 126229853, 138570284, 151899428, 166278945, 181775849, 198456941, 216394746, 235661505, 256338017, 278503009, 302242623, 327644632, 354799834, 383805368, 414759214, 447764499, 482931051
Offset: 5

Views

Author

Keywords

Comments

a(n) counts the solutions to the inequality x_1^(1/2)+x_2^(1/2)+x_3^(1/2)<=n for any three distinct integers 1<=x_1R. J. Mathar, Jul 03 2009

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    A000397 := proc(n) local a,x1,x2,x3 ; a := 0 ; for x1 from 1 to n^2 do for x2 from x1+1 to floor( (n-x1^(1/2))^2 ) do x3 := (n-x1^(1/2)-x2^(1/2))^2 ; if floor(x3) >= x2+1 then a := a+floor(x3-x2) ; fi; od: od: a ; end: for n from 5 do printf("%d,\n",A000397(n)) ; od: # R. J. Mathar, Sep 29 2009
  • Mathematica
    A000397[n_] := Module[{a, x1, x2, x3}, a = 0; For[x1 = 1, x1 <= n^2, x1++, For[x2 = x1+1, x2 <= Floor[(n-x1^(1/2))^2], x2++, x3 = (n-x1^(1/2) - x2^(1/2))^2 ; If[Floor[x3] >= x2+1, a = a + Floor[x3-x2]]]]; a]; Reap[ For[n = 5, n <= 40, n++, Print[an = A000397[n]; Sow[an]]]][[2, 1]] (* Jean-François Alcover, Feb 08 2016, after R. J. Mathar *)

Extensions

More terms from R. J. Mathar, Sep 29 2009
More terms from Sean A. Irvine, Nov 14 2010